--- license: apache-2.0 base_model: t5-small tags: - generated_from_trainer datasets: - billsum metrics: - rouge model-index: - name: mycustom_summarization_model results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: billsum type: billsum config: default split: ca_test args: default metrics: - name: Rouge1 type: rouge value: 0.1386 --- # mycustom_summarization_model This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the billsum dataset. It achieves the following results on the evaluation set: - Loss: 2.5992 - Rouge1: 0.1386 - Rouge2: 0.0475 - Rougel: 0.1129 - Rougelsum: 0.1129 - Gen Len: 19.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | No log | 1.0 | 62 | 2.8842 | 0.1287 | 0.0356 | 0.1075 | 0.1078 | 19.0 | | No log | 2.0 | 124 | 2.6762 | 0.1303 | 0.0427 | 0.1086 | 0.1086 | 19.0 | | No log | 3.0 | 186 | 2.6165 | 0.1352 | 0.046 | 0.1112 | 0.111 | 19.0 | | No log | 4.0 | 248 | 2.5992 | 0.1386 | 0.0475 | 0.1129 | 0.1129 | 19.0 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3