---
base_model: BAAI/bge-base-en-v1.5
language:
- en
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:6300
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: The consolidated financial statements and accompanying notes listed
in Part IV, Item 15(a)(1) of this Annual Report on Form 10-K are included elsewhere
in this Annual Report on Form 10-K.
sentences:
- What is the carrying value of the indefinite-lived intangible assets related to
the Certificate of Needs and Medicare licenses as of December 31, 2023?
- What sections of the Annual Report on Form 10-K contain the company's financial
statements?
- What was the effective tax rate excluding discrete net tax benefits for the year
2022?
- source_sentence: Consumers are served through Amazon's online and physical stores
with an emphasis on selection, price, and convenience.
sentences:
- What decision did the European Commission make on July 10, 2023 regarding the
United States?
- What are the primary offerings to consumers through Amazon's online and physical
stores?
- What activities are included in the services and other revenue segment of General
Motors Company?
- source_sentence: Visa has traditionally referred to their structure of facilitating
secure, reliable, and efficient money movement among consumers, issuing and acquiring
financial institutions, and merchants as the 'four-party' model.
sentences:
- What model does Visa traditionally refer to regarding their transaction process
among consumers, financial institutions, and merchants?
- What percentage of Meta's U.S. workforce in 2023 were represented by people with
disabilities, veterans, and members of the LGBTQ+ community?
- What are the revenue sources for the Company’s Health Care Benefits Segment?
- source_sentence: 'In addition to LinkedIn’s free services, LinkedIn offers monetized
solutions: Talent Solutions, Marketing Solutions, Premium Subscriptions, and Sales
Solutions. Talent Solutions provide insights for workforce planning and tools
to hire, nurture, and develop talent. Talent Solutions also includes Learning
Solutions, which help businesses close critical skills gaps in times where companies
are having to do more with existing talent.'
sentences:
- What were the major factors contributing to the increased expenses excluding interest
for Investor Services and Advisor Services in 2023?
- What were the pre-tax earnings of the manufacturing sector in 2023, 2022, and
2021?
- What does LinkedIn's Talent Solutions include?
- source_sentence: Management assessed the effectiveness of the company’s internal
control over financial reporting as of December 31, 2023. In making this assessment,
we used the criteria set forth by the Committee of Sponsoring Organizations of
the Treadway Commission (COSO) in Internal Control—Integrated Framework (2013).
sentences:
- What criteria did Caterpillar Inc. use to assess the effectiveness of its internal
control over financial reporting as of December 31, 2023?
- What are the primary components of U.S. sales volumes for Ford?
- What was the percentage increase in Schwab's common stock dividend in 2022?
model-index:
- name: BGE base Financial Matryoshka
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.6514285714285715
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.79
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8228571428571428
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8785714285714286
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6514285714285715
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2633333333333333
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.16457142857142856
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08785714285714284
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6514285714285715
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.79
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8228571428571428
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8785714285714286
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.765832517664664
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7298044217687073
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.733780107239095
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.6471428571428571
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.7828571428571428
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8228571428571428
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8685714285714285
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6471428571428571
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.26095238095238094
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.16457142857142856
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08685714285714284
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6471428571428571
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.7828571428571428
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8228571428571428
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8685714285714285
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7588695496897898
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.723611111111111
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7284354380762504
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.6257142857142857
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.7614285714285715
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8214285714285714
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.87
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6257142857142857
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2538095238095238
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.16428571428571426
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.087
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6257142857142857
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.7614285714285715
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8214285714285714
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.87
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7469869474164086
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7076785714285712
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.711905388391952
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.62
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.7371428571428571
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.7828571428571428
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8485714285714285
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.62
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.24571428571428572
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.15657142857142856
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08485714285714284
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.62
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.7371428571428571
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.7828571428571428
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8485714285714285
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7301000101741961
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.6927205215419503
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.697374681707091
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.5728571428571428
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.7014285714285714
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.73
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.7828571428571428
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.5728571428571428
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.23380952380952374
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.146
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.07828571428571428
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.5728571428571428
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.7014285714285714
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.73
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.7828571428571428
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.6772252893840157
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.643600340136054
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.6506393379163631
name: Cosine Map@100
---
# BGE base Financial Matryoshka
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5)
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- json
- **Language:** en
- **License:** apache-2.0
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Avinashc/bge-base-financial-matryoshka")
# Run inference
sentences = [
'Management assessed the effectiveness of the company’s internal control over financial reporting as of December 31, 2023. In making this assessment, we used the criteria set forth by the Committee of Sponsoring Organizations of the Treadway Commission (COSO) in Internal Control—Integrated Framework (2013).',
'What criteria did Caterpillar Inc. use to assess the effectiveness of its internal control over financial reporting as of December 31, 2023?',
'What are the primary components of U.S. sales volumes for Ford?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Information Retrieval
* Dataset: `dim_768`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.6514 |
| cosine_accuracy@3 | 0.79 |
| cosine_accuracy@5 | 0.8229 |
| cosine_accuracy@10 | 0.8786 |
| cosine_precision@1 | 0.6514 |
| cosine_precision@3 | 0.2633 |
| cosine_precision@5 | 0.1646 |
| cosine_precision@10 | 0.0879 |
| cosine_recall@1 | 0.6514 |
| cosine_recall@3 | 0.79 |
| cosine_recall@5 | 0.8229 |
| cosine_recall@10 | 0.8786 |
| cosine_ndcg@10 | 0.7658 |
| cosine_mrr@10 | 0.7298 |
| **cosine_map@100** | **0.7338** |
#### Information Retrieval
* Dataset: `dim_512`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.6471 |
| cosine_accuracy@3 | 0.7829 |
| cosine_accuracy@5 | 0.8229 |
| cosine_accuracy@10 | 0.8686 |
| cosine_precision@1 | 0.6471 |
| cosine_precision@3 | 0.261 |
| cosine_precision@5 | 0.1646 |
| cosine_precision@10 | 0.0869 |
| cosine_recall@1 | 0.6471 |
| cosine_recall@3 | 0.7829 |
| cosine_recall@5 | 0.8229 |
| cosine_recall@10 | 0.8686 |
| cosine_ndcg@10 | 0.7589 |
| cosine_mrr@10 | 0.7236 |
| **cosine_map@100** | **0.7284** |
#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.6257 |
| cosine_accuracy@3 | 0.7614 |
| cosine_accuracy@5 | 0.8214 |
| cosine_accuracy@10 | 0.87 |
| cosine_precision@1 | 0.6257 |
| cosine_precision@3 | 0.2538 |
| cosine_precision@5 | 0.1643 |
| cosine_precision@10 | 0.087 |
| cosine_recall@1 | 0.6257 |
| cosine_recall@3 | 0.7614 |
| cosine_recall@5 | 0.8214 |
| cosine_recall@10 | 0.87 |
| cosine_ndcg@10 | 0.747 |
| cosine_mrr@10 | 0.7077 |
| **cosine_map@100** | **0.7119** |
#### Information Retrieval
* Dataset: `dim_128`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.62 |
| cosine_accuracy@3 | 0.7371 |
| cosine_accuracy@5 | 0.7829 |
| cosine_accuracy@10 | 0.8486 |
| cosine_precision@1 | 0.62 |
| cosine_precision@3 | 0.2457 |
| cosine_precision@5 | 0.1566 |
| cosine_precision@10 | 0.0849 |
| cosine_recall@1 | 0.62 |
| cosine_recall@3 | 0.7371 |
| cosine_recall@5 | 0.7829 |
| cosine_recall@10 | 0.8486 |
| cosine_ndcg@10 | 0.7301 |
| cosine_mrr@10 | 0.6927 |
| **cosine_map@100** | **0.6974** |
#### Information Retrieval
* Dataset: `dim_64`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.5729 |
| cosine_accuracy@3 | 0.7014 |
| cosine_accuracy@5 | 0.73 |
| cosine_accuracy@10 | 0.7829 |
| cosine_precision@1 | 0.5729 |
| cosine_precision@3 | 0.2338 |
| cosine_precision@5 | 0.146 |
| cosine_precision@10 | 0.0783 |
| cosine_recall@1 | 0.5729 |
| cosine_recall@3 | 0.7014 |
| cosine_recall@5 | 0.73 |
| cosine_recall@10 | 0.7829 |
| cosine_ndcg@10 | 0.6772 |
| cosine_mrr@10 | 0.6436 |
| **cosine_map@100** | **0.6506** |
## Training Details
### Training Dataset
#### json
* Dataset: json
* Size: 6,300 training samples
* Columns: positive
and anchor
* Approximate statistics based on the first 1000 samples:
| | positive | anchor |
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details |
The Company defines fair value as the price received to transfer an asset or paid to transfer a liability in an orderly transaction between market participants at the measurement date. In accordance with ASC 820, Fair Value Measurements and Disclosures, the Company uses the fair value hierarchy which prioritizes the inputs used to measure fair value. The hierarchy gives the highest priority to unadjusted quoted prices in active markets for identical assets or liabilities (Level 1), observable inputs other than quoted prices (Level 2), and unobservable inputs (Level 3).
| What is the role of Level 1, Level 2, and Level 3 inputs in the fair value hierarchy according to ASC 820?
|
| In the event of conversion of the Notes, if shares are delivered to the Company under the Capped Call Transactions, they will offset the dilutive effect of the shares that the Company would issue under the Notes.
| What happens to the dilutive effect of shares issued under the Notes if shares are delivered to the Company under the Capped Call Transactions during the conversion?
|
| Marketing expenses increased $48.8 million to $759.2 million in the year ended December 31, 2023 compared to the year ended December 31, 2022.
| How much did the marketing expenses increase in the year ended December 31, 2023?
|
* Loss: [MatryoshkaLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 4
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `bf16`: True
- `tf32`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates
#### All Hyperparameters