BAAI
/

shunxing1234 commited on
Commit
819c669
1 Parent(s): 2a6fb26

Delete modeling_aquila.py

Browse files
Files changed (1) hide show
  1. modeling_aquila.py +0 -894
modeling_aquila.py DELETED
@@ -1,894 +0,0 @@
1
- # coding=utf-8
2
- # Copyright 2023 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
- #
4
- # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
- # and OPT implementations in this library. It has been modified from its
6
- # original forms to accommodate minor architectural differences compared
7
- # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
- #
9
- # Licensed under the Apache License, Version 2.0 (the "License");
10
- # you may not use this file except in compliance with the License.
11
- # You may obtain a copy of the License at
12
- #
13
- # http://www.apache.org/licenses/LICENSE-2.0
14
- #
15
- # Unless required by applicable law or agreed to in writing, software
16
- # distributed under the License is distributed on an "AS IS" BASIS,
17
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
- # See the License for the specific language governing permissions and
19
- # limitations under the License.
20
- """ PyTorch Aquila model."""
21
- import math
22
- from typing import List, Optional, Tuple, Union
23
-
24
- import torch
25
- import torch.utils.checkpoint
26
- from torch import nn
27
- from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
28
-
29
- from ...activations import ACT2FN
30
- from ...modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast
31
- from ...modeling_utils import PreTrainedModel
32
- from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
33
- from .configuration_aquila import AquilaConfig
34
-
35
-
36
- logger = logging.get_logger(__name__)
37
-
38
- _CONFIG_FOR_DOC = "AquilaConfig"
39
-
40
-
41
- # Copied from transformers.models.bart.modeling_bart._make_causal_mask
42
- def _make_causal_mask(
43
- input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
44
- ):
45
- """
46
- Make causal mask used for bi-directional self-attention.
47
- """
48
- bsz, tgt_len = input_ids_shape
49
- mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device)
50
- mask_cond = torch.arange(mask.size(-1), device=device)
51
- mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
52
- mask = mask.to(dtype)
53
-
54
- if past_key_values_length > 0:
55
- mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
56
- return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
57
-
58
-
59
- # Copied from transformers.models.bart.modeling_bart._expand_mask
60
- def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
61
- """
62
- Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
63
- """
64
- bsz, src_len = mask.size()
65
- tgt_len = tgt_len if tgt_len is not None else src_len
66
-
67
- expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
68
-
69
- inverted_mask = 1.0 - expanded_mask
70
-
71
- return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
72
-
73
-
74
- # Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Aquila
75
- class AquilaRMSNorm(nn.Module):
76
- def __init__(self, hidden_size, eps=1e-6):
77
- """
78
- AquilaRMSNorm is equivalent to T5LayerNorm
79
- """
80
- super().__init__()
81
- self.weight = nn.Parameter(torch.ones(hidden_size))
82
- self.variance_epsilon = eps
83
-
84
- def forward(self, hidden_states):
85
- input_dtype = hidden_states.dtype
86
- variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
87
- hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
88
-
89
- return (self.weight * hidden_states).to(input_dtype)
90
-
91
-
92
- # Copied from transformers.models.llama.modeling_llama.LlamaRotaryEmbedding with Llama->Aquila
93
- class AquilaRotaryEmbedding(torch.nn.Module):
94
- def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
95
- super().__init__()
96
- inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(device) / dim))
97
- self.register_buffer("inv_freq", inv_freq)
98
-
99
- # Build here to make `torch.jit.trace` work.
100
- self.max_seq_len_cached = max_position_embeddings
101
- t = torch.arange(self.max_seq_len_cached, device=self.inv_freq.device, dtype=self.inv_freq.dtype)
102
- freqs = torch.einsum("i,j->ij", t, self.inv_freq)
103
- # Different from paper, but it uses a different permutation in order to obtain the same calculation
104
- emb = torch.cat((freqs, freqs), dim=-1)
105
- self.register_buffer("cos_cached", emb.cos()[None, None, :, :], persistent=False)
106
- self.register_buffer("sin_cached", emb.sin()[None, None, :, :], persistent=False)
107
-
108
- def forward(self, x, seq_len=None):
109
- # x: [bs, num_attention_heads, seq_len, head_size]
110
- # This `if` block is unlikely to be run after we build sin/cos in `__init__`. Keep the logic here just in case.
111
- if seq_len > self.max_seq_len_cached:
112
- self.max_seq_len_cached = seq_len
113
- t = torch.arange(self.max_seq_len_cached, device=x.device, dtype=self.inv_freq.dtype)
114
- freqs = torch.einsum("i,j->ij", t, self.inv_freq)
115
- # Different from paper, but it uses a different permutation in order to obtain the same calculation
116
- emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
117
- self.register_buffer("cos_cached", emb.cos()[None, None, :, :], persistent=False)
118
- self.register_buffer("sin_cached", emb.sin()[None, None, :, :], persistent=False)
119
- return (
120
- self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
121
- self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
122
- )
123
-
124
-
125
- def rotate_half(x):
126
- """Rotates half the hidden dims of the input."""
127
- x1 = x[..., : x.shape[-1] // 2]
128
- x2 = x[..., x.shape[-1] // 2 :]
129
- return torch.cat((-x2, x1), dim=-1)
130
-
131
-
132
- def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
133
- # The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
134
- cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
135
- sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
136
- cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
137
- sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
138
- q_embed = (q * cos) + (rotate_half(q) * sin)
139
- k_embed = (k * cos) + (rotate_half(k) * sin)
140
- return q_embed, k_embed
141
-
142
-
143
- # Copied from transformers.models.llama.modeling_llama.LlamaMLP with Llama->Aquila
144
- class AquilaMLP(nn.Module):
145
- def __init__(
146
- self,
147
- hidden_size: int,
148
- intermediate_size: int,
149
- hidden_act: str,
150
- ):
151
- super().__init__()
152
- self.gate_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
153
- self.down_proj = nn.Linear(intermediate_size, hidden_size, bias=False)
154
- self.up_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
155
- self.act_fn = ACT2FN[hidden_act]
156
-
157
- def forward(self, x):
158
- return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
159
-
160
-
161
- # Copied from transformers.models.llama.modeling_llama.LlamaAttention with Llama->Aquila
162
- class AquilaAttention(nn.Module):
163
- """Multi-headed attention from 'Attention Is All You Need' paper"""
164
-
165
- def __init__(self, config: AquilaConfig):
166
- super().__init__()
167
- self.config = config
168
- self.hidden_size = config.hidden_size
169
- self.num_heads = config.num_attention_heads
170
- self.head_dim = self.hidden_size // self.num_heads
171
- self.max_position_embeddings = config.max_position_embeddings
172
-
173
- if (self.head_dim * self.num_heads) != self.hidden_size:
174
- raise ValueError(
175
- f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
176
- f" and `num_heads`: {self.num_heads})."
177
- )
178
- self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
179
- self.k_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
180
- self.v_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
181
- self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
182
- self.rotary_emb = AquilaRotaryEmbedding(self.head_dim, max_position_embeddings=self.max_position_embeddings)
183
-
184
- def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
185
- return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
186
-
187
- def forward(
188
- self,
189
- hidden_states: torch.Tensor,
190
- attention_mask: Optional[torch.Tensor] = None,
191
- position_ids: Optional[torch.LongTensor] = None,
192
- past_key_value: Optional[Tuple[torch.Tensor]] = None,
193
- output_attentions: bool = False,
194
- use_cache: bool = False,
195
- ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
196
- bsz, q_len, _ = hidden_states.size()
197
-
198
- query_states = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
199
- key_states = self.k_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
200
- value_states = self.v_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
201
-
202
- kv_seq_len = key_states.shape[-2]
203
- if past_key_value is not None:
204
- kv_seq_len += past_key_value[0].shape[-2]
205
- cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
206
- query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
207
- # [bsz, nh, t, hd]
208
-
209
- if past_key_value is not None:
210
- # reuse k, v, self_attention
211
- key_states = torch.cat([past_key_value[0], key_states], dim=2)
212
- value_states = torch.cat([past_key_value[1], value_states], dim=2)
213
-
214
- past_key_value = (key_states, value_states) if use_cache else None
215
-
216
- attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
217
-
218
- attn_weights = torch.clamp(attn_weights, min=-1024., max=1024.)
219
- if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
220
- raise ValueError(
221
- f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
222
- f" {attn_weights.size()}"
223
- )
224
-
225
- if attention_mask is not None:
226
- if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
227
- raise ValueError(
228
- f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
229
- )
230
- attn_weights = attn_weights + attention_mask
231
- attn_weights = torch.max(
232
- attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min, device=attn_weights.device)
233
- )
234
-
235
- # upcast attention to fp32
236
- attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
237
- attn_output = torch.matmul(attn_weights, value_states)
238
-
239
- if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
240
- raise ValueError(
241
- f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
242
- f" {attn_output.size()}"
243
- )
244
-
245
- attn_output = attn_output.transpose(1, 2)
246
- attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
247
-
248
- attn_output = self.o_proj(attn_output)
249
-
250
- if not output_attentions:
251
- attn_weights = None
252
-
253
- return attn_output, attn_weights, past_key_value
254
-
255
-
256
- # Copied from transformers.models.llama.modeling_llama.LlamaDecoderLayer with Llama->Aquila
257
- class AquilaDecoderLayer(nn.Module):
258
- def __init__(self, config: AquilaConfig):
259
- super().__init__()
260
- self.hidden_size = config.hidden_size
261
- self.self_attn = AquilaAttention(config=config)
262
- self.mlp = AquilaMLP(
263
- hidden_size=self.hidden_size,
264
- intermediate_size=config.intermediate_size,
265
- hidden_act=config.hidden_act,
266
- )
267
- self.input_layernorm = AquilaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
268
- self.post_attention_layernorm = AquilaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
269
-
270
- def forward(
271
- self,
272
- hidden_states: torch.Tensor,
273
- attention_mask: Optional[torch.Tensor] = None,
274
- position_ids: Optional[torch.LongTensor] = None,
275
- past_key_value: Optional[Tuple[torch.Tensor]] = None,
276
- output_attentions: Optional[bool] = False,
277
- use_cache: Optional[bool] = False,
278
- ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
279
- """
280
- Args:
281
- hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
282
- attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
283
- `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
284
- output_attentions (`bool`, *optional*):
285
- Whether or not to return the attentions tensors of all attention layers. See `attentions` under
286
- returned tensors for more detail.
287
- use_cache (`bool`, *optional*):
288
- If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
289
- (see `past_key_values`).
290
- past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
291
- """
292
-
293
- residual = hidden_states
294
-
295
- hidden_states = self.input_layernorm(hidden_states)
296
-
297
- # Self Attention
298
- hidden_states, self_attn_weights, present_key_value = self.self_attn(
299
- hidden_states=hidden_states,
300
- attention_mask=attention_mask,
301
- position_ids=position_ids,
302
- past_key_value=past_key_value,
303
- output_attentions=output_attentions,
304
- use_cache=use_cache,
305
- )
306
- hidden_states = residual + hidden_states
307
-
308
- # Fully Connected
309
- residual = hidden_states
310
- hidden_states = self.post_attention_layernorm(hidden_states)
311
- hidden_states = self.mlp(hidden_states)
312
- hidden_states = residual + hidden_states
313
-
314
- outputs = (hidden_states,)
315
-
316
- if output_attentions:
317
- outputs += (self_attn_weights,)
318
-
319
- if use_cache:
320
- outputs += (present_key_value,)
321
-
322
- return outputs
323
-
324
-
325
- AQUILA_START_DOCSTRING = r"""
326
- This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
327
- library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
328
- etc.)
329
-
330
- This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
331
- Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
332
- and behavior.
333
-
334
- Parameters:
335
- config ([`AquilaConfig`]):
336
- Model configuration class with all the parameters of the model. Initializing with a config file does not
337
- load the weights associated with the model, only the configuration. Check out the
338
- [`~PreTrainedModel.from_pretrained`] method to load the model weights.
339
- """
340
-
341
-
342
- @add_start_docstrings(
343
- "The bare Aquila Model outputting raw hidden-states without any specific head on top.",
344
- AQUILA_START_DOCSTRING,
345
- )
346
- # Copied from transformers.models.llama.modeling_llama.LlamaPreTrainedModel with Llama->Aquila
347
- class AquilaPreTrainedModel(PreTrainedModel):
348
- config_class = AquilaConfig
349
- base_model_prefix = "model"
350
- supports_gradient_checkpointing = True
351
- _no_split_modules = ["AquilaDecoderLayer"]
352
- _skip_keys_device_placement = "past_key_values"
353
- _keys_to_ignore_on_load_unexpected = [r"decoder\.version"]
354
-
355
- def _init_weights(self, module):
356
- std = self.config.initializer_range
357
- if isinstance(module, nn.Linear):
358
- module.weight.data.normal_(mean=0.0, std=std)
359
- if module.bias is not None:
360
- module.bias.data.zero_()
361
- elif isinstance(module, nn.Embedding):
362
- module.weight.data.normal_(mean=0.0, std=std)
363
- if module.padding_idx is not None:
364
- module.weight.data[module.padding_idx].zero_()
365
-
366
- def _set_gradient_checkpointing(self, module, value=False):
367
- if isinstance(module, AquilaModel):
368
- module.gradient_checkpointing = value
369
-
370
-
371
- AQUILA_INPUTS_DOCSTRING = r"""
372
- Args:
373
- input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
374
- Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
375
- it.
376
-
377
- Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
378
- [`PreTrainedTokenizer.__call__`] for details.
379
-
380
- [What are input IDs?](../glossary#input-ids)
381
- attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
382
- Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
383
-
384
- - 1 for tokens that are **not masked**,
385
- - 0 for tokens that are **masked**.
386
-
387
- [What are attention masks?](../glossary#attention-mask)
388
-
389
- Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
390
- [`PreTrainedTokenizer.__call__`] for details.
391
-
392
- If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
393
- `past_key_values`).
394
-
395
- If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
396
- and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
397
- information on the default strategy.
398
-
399
- - 1 indicates the head is **not masked**,
400
- - 0 indicates the head is **masked**.
401
- position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
402
- Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
403
- config.n_positions - 1]`.
404
-
405
- [What are position IDs?](../glossary#position-ids)
406
- past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
407
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
408
- `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
409
- `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
410
-
411
- Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
412
- blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
413
-
414
- If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
415
- don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
416
- `decoder_input_ids` of shape `(batch_size, sequence_length)`.
417
- inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
418
- Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
419
- is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
420
- model's internal embedding lookup matrix.
421
- use_cache (`bool`, *optional*):
422
- If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
423
- `past_key_values`).
424
- output_attentions (`bool`, *optional*):
425
- Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
426
- tensors for more detail.
427
- output_hidden_states (`bool`, *optional*):
428
- Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
429
- more detail.
430
- return_dict (`bool`, *optional*):
431
- Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
432
- """
433
-
434
-
435
- @add_start_docstrings(
436
- "The bare Aquila Model outputting raw hidden-states without any specific head on top.",
437
- AQUILA_START_DOCSTRING,
438
- )
439
- # Copied from transformers.models.llama.modeling_llama.LlamaModel with LLAMA->AQUILA,Llama->Aquila
440
- class AquilaModel(AquilaPreTrainedModel):
441
- """
442
- Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`AquilaDecoderLayer`]
443
-
444
- Args:
445
- config: AquilaConfig
446
- """
447
-
448
- def __init__(self, config: AquilaConfig):
449
- super().__init__(config)
450
- self.padding_idx = config.pad_token_id
451
- self.vocab_size = config.vocab_size
452
-
453
- self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
454
- self.layers = nn.ModuleList([AquilaDecoderLayer(config) for _ in range(config.num_hidden_layers)])
455
- self.norm = AquilaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
456
-
457
- self.gradient_checkpointing = False
458
- # Initialize weights and apply final processing
459
- self.post_init()
460
-
461
- def get_input_embeddings(self):
462
- return self.embed_tokens
463
-
464
- def set_input_embeddings(self, value):
465
- self.embed_tokens = value
466
-
467
- def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
468
- # create causal mask
469
- # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
470
- combined_attention_mask = None
471
- if input_shape[-1] > 1:
472
- combined_attention_mask = _make_causal_mask(
473
- input_shape,
474
- inputs_embeds.dtype,
475
- device=inputs_embeds.device,
476
- past_key_values_length=past_key_values_length,
477
- )
478
-
479
- if attention_mask is not None:
480
- # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
481
- expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
482
- inputs_embeds.device
483
- )
484
- combined_attention_mask = (
485
- expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
486
- )
487
-
488
- return combined_attention_mask
489
-
490
- @add_start_docstrings_to_model_forward(AQUILA_INPUTS_DOCSTRING)
491
- def forward(
492
- self,
493
- input_ids: torch.LongTensor = None,
494
- attention_mask: Optional[torch.Tensor] = None,
495
- position_ids: Optional[torch.LongTensor] = None,
496
- past_key_values: Optional[List[torch.FloatTensor]] = None,
497
- inputs_embeds: Optional[torch.FloatTensor] = None,
498
- use_cache: Optional[bool] = None,
499
- output_attentions: Optional[bool] = None,
500
- output_hidden_states: Optional[bool] = None,
501
- return_dict: Optional[bool] = None,
502
- ) -> Union[Tuple, BaseModelOutputWithPast]:
503
- output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
504
- output_hidden_states = (
505
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
506
- )
507
- use_cache = use_cache if use_cache is not None else self.config.use_cache
508
-
509
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
510
-
511
- # retrieve input_ids and inputs_embeds
512
- if input_ids is not None and inputs_embeds is not None:
513
- raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
514
- elif input_ids is not None:
515
- batch_size, seq_length = input_ids.shape
516
- elif inputs_embeds is not None:
517
- batch_size, seq_length, _ = inputs_embeds.shape
518
- else:
519
- raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
520
-
521
- seq_length_with_past = seq_length
522
- past_key_values_length = 0
523
-
524
- if past_key_values is not None:
525
- past_key_values_length = past_key_values[0][0].shape[2]
526
- seq_length_with_past = seq_length_with_past + past_key_values_length
527
-
528
- if position_ids is None:
529
- device = input_ids.device if input_ids is not None else inputs_embeds.device
530
- position_ids = torch.arange(
531
- past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
532
- )
533
- position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
534
- else:
535
- position_ids = position_ids.view(-1, seq_length).long()
536
-
537
- if inputs_embeds is None:
538
- inputs_embeds = self.embed_tokens(input_ids)
539
- # embed positions
540
- if attention_mask is None:
541
- attention_mask = torch.ones(
542
- (batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
543
- )
544
- attention_mask = self._prepare_decoder_attention_mask(
545
- attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
546
- )
547
-
548
- hidden_states = inputs_embeds
549
-
550
- if self.gradient_checkpointing and self.training:
551
- if use_cache:
552
- logger.warning_once(
553
- "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
554
- )
555
- use_cache = False
556
-
557
- # decoder layers
558
- all_hidden_states = () if output_hidden_states else None
559
- all_self_attns = () if output_attentions else None
560
- next_decoder_cache = () if use_cache else None
561
-
562
- for idx, decoder_layer in enumerate(self.layers):
563
- if output_hidden_states:
564
- all_hidden_states += (hidden_states,)
565
-
566
- past_key_value = past_key_values[idx] if past_key_values is not None else None
567
-
568
- if self.gradient_checkpointing and self.training:
569
-
570
- def create_custom_forward(module):
571
- def custom_forward(*inputs):
572
- # None for past_key_value
573
- return module(*inputs, output_attentions, None)
574
-
575
- return custom_forward
576
-
577
- layer_outputs = torch.utils.checkpoint.checkpoint(
578
- create_custom_forward(decoder_layer),
579
- hidden_states,
580
- attention_mask,
581
- position_ids,
582
- None,
583
- )
584
- else:
585
- layer_outputs = decoder_layer(
586
- hidden_states,
587
- attention_mask=attention_mask,
588
- position_ids=position_ids,
589
- past_key_value=past_key_value,
590
- output_attentions=output_attentions,
591
- use_cache=use_cache,
592
- )
593
-
594
- hidden_states = layer_outputs[0]
595
-
596
- if use_cache:
597
- next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
598
-
599
- if output_attentions:
600
- all_self_attns += (layer_outputs[1],)
601
-
602
- hidden_states = self.norm(hidden_states)
603
-
604
- # add hidden states from the last decoder layer
605
- if output_hidden_states:
606
- all_hidden_states += (hidden_states,)
607
-
608
- next_cache = next_decoder_cache if use_cache else None
609
- if not return_dict:
610
- return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
611
- return BaseModelOutputWithPast(
612
- last_hidden_state=hidden_states,
613
- past_key_values=next_cache,
614
- hidden_states=all_hidden_states,
615
- attentions=all_self_attns,
616
- )
617
-
618
-
619
- # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM with LLAMA->AQUILA,Llama->Aquila
620
- class AquilaForCausalLM(AquilaPreTrainedModel):
621
- def __init__(self, config):
622
- super().__init__(config)
623
- self.model = AquilaModel(config)
624
-
625
- self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
626
-
627
- # Initialize weights and apply final processing
628
- self.post_init()
629
-
630
- def get_input_embeddings(self):
631
- return self.model.embed_tokens
632
-
633
- def set_input_embeddings(self, value):
634
- self.model.embed_tokens = value
635
-
636
- def get_output_embeddings(self):
637
- return self.lm_head
638
-
639
- def set_output_embeddings(self, new_embeddings):
640
- self.lm_head = new_embeddings
641
-
642
- def set_decoder(self, decoder):
643
- self.model = decoder
644
-
645
- def get_decoder(self):
646
- return self.model
647
-
648
- @add_start_docstrings_to_model_forward(AQUILA_INPUTS_DOCSTRING)
649
- @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
650
- def forward(
651
- self,
652
- input_ids: torch.LongTensor = None,
653
- attention_mask: Optional[torch.Tensor] = None,
654
- position_ids: Optional[torch.LongTensor] = None,
655
- past_key_values: Optional[List[torch.FloatTensor]] = None,
656
- inputs_embeds: Optional[torch.FloatTensor] = None,
657
- labels: Optional[torch.LongTensor] = None,
658
- use_cache: Optional[bool] = None,
659
- output_attentions: Optional[bool] = None,
660
- output_hidden_states: Optional[bool] = None,
661
- return_dict: Optional[bool] = None,
662
- ) -> Union[Tuple, CausalLMOutputWithPast]:
663
- r"""
664
- Args:
665
- labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
666
- Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
667
- config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
668
- (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
669
-
670
- Returns:
671
-
672
- Example:
673
-
674
- ```python
675
- >>> from transformers import AutoTokenizer, AquilaForCausalLM
676
-
677
- >>> model = AquilaForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
678
- >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
679
-
680
- >>> prompt = "Hey, are you consciours? Can you talk to me?"
681
- >>> inputs = tokenizer(prompt, return_tensors="pt")
682
-
683
- >>> # Generate
684
- >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
685
- >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
686
- "Hey, are you consciours? Can you talk to me?\nI'm not consciours, but I can talk to you."
687
- ```"""
688
-
689
- output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
690
- output_hidden_states = (
691
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
692
- )
693
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
694
-
695
- # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
696
- outputs = self.model(
697
- input_ids=input_ids,
698
- attention_mask=attention_mask,
699
- position_ids=position_ids,
700
- past_key_values=past_key_values,
701
- inputs_embeds=inputs_embeds,
702
- use_cache=use_cache,
703
- output_attentions=output_attentions,
704
- output_hidden_states=output_hidden_states,
705
- return_dict=return_dict,
706
- )
707
-
708
- hidden_states = outputs[0]
709
- logits = self.lm_head(hidden_states)
710
-
711
- loss = None
712
- if labels is not None:
713
- # Shift so that tokens < n predict n
714
- shift_logits = logits[..., :-1, :].contiguous()
715
- shift_labels = labels[..., 1:].contiguous()
716
- # Flatten the tokens
717
- loss_fct = CrossEntropyLoss()
718
- shift_logits = shift_logits.view(-1, self.config.vocab_size)
719
- shift_labels = shift_labels.view(-1)
720
- # Enable model parallelism
721
- shift_labels = shift_labels.to(shift_logits.device)
722
- loss = loss_fct(shift_logits, shift_labels)
723
-
724
- if not return_dict:
725
- output = (logits,) + outputs[1:]
726
- return (loss,) + output if loss is not None else output
727
-
728
- return CausalLMOutputWithPast(
729
- loss=loss,
730
- logits=logits,
731
- past_key_values=outputs.past_key_values,
732
- hidden_states=outputs.hidden_states,
733
- attentions=outputs.attentions,
734
- )
735
-
736
- def prepare_inputs_for_generation(
737
- self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
738
- ):
739
- if past_key_values:
740
- input_ids = input_ids[:, -1:]
741
-
742
- position_ids = kwargs.get("position_ids", None)
743
- if attention_mask is not None and position_ids is None:
744
- # create position_ids on the fly for batch generation
745
- position_ids = attention_mask.long().cumsum(-1) - 1
746
- position_ids.masked_fill_(attention_mask == 0, 1)
747
- if past_key_values:
748
- position_ids = position_ids[:, -1].unsqueeze(-1)
749
-
750
- # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
751
- if inputs_embeds is not None and past_key_values is None:
752
- model_inputs = {"inputs_embeds": inputs_embeds}
753
- else:
754
- model_inputs = {"input_ids": input_ids}
755
-
756
- model_inputs.update(
757
- {
758
- "position_ids": position_ids,
759
- "past_key_values": past_key_values,
760
- "use_cache": kwargs.get("use_cache"),
761
- "attention_mask": attention_mask,
762
- }
763
- )
764
- return model_inputs
765
-
766
- @staticmethod
767
- def _reorder_cache(past_key_values, beam_idx):
768
- reordered_past = ()
769
- for layer_past in past_key_values:
770
- reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),)
771
- return reordered_past
772
-
773
-
774
- @add_start_docstrings(
775
- """
776
- The LLaMa Model transformer with a sequence classification head on top (linear layer).
777
-
778
- [`AquilaForSequenceClassification`] uses the last token in order to do the classification, as other causal models
779
- (e.g. GPT-2) do.
780
-
781
- Since it does classification on the last token, it requires to know the position of the last token. If a
782
- `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
783
- no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
784
- padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
785
- each row of the batch).
786
- """,
787
- AQUILA_START_DOCSTRING,
788
- )
789
- # Copied from transformers.models.llama.modeling_llama.LlamaForSequenceClassification with LLAMA->AQUILA,Llama->Aquila
790
- class AquilaForSequenceClassification(AquilaPreTrainedModel):
791
- _keys_to_ignore_on_load_missing = [r"lm_head.weight"]
792
-
793
- def __init__(self, config):
794
- super().__init__(config)
795
- self.num_labels = config.num_labels
796
- self.model = AquilaModel(config)
797
- self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
798
-
799
- # Initialize weights and apply final processing
800
- self.post_init()
801
-
802
- def get_input_embeddings(self):
803
- return self.model.embed_tokens
804
-
805
- def set_input_embeddings(self, value):
806
- self.model.embed_tokens = value
807
-
808
- @add_start_docstrings_to_model_forward(AQUILA_INPUTS_DOCSTRING)
809
- def forward(
810
- self,
811
- input_ids: torch.LongTensor = None,
812
- attention_mask: Optional[torch.Tensor] = None,
813
- position_ids: Optional[torch.LongTensor] = None,
814
- past_key_values: Optional[List[torch.FloatTensor]] = None,
815
- inputs_embeds: Optional[torch.FloatTensor] = None,
816
- labels: Optional[torch.LongTensor] = None,
817
- use_cache: Optional[bool] = None,
818
- output_attentions: Optional[bool] = None,
819
- output_hidden_states: Optional[bool] = None,
820
- return_dict: Optional[bool] = None,
821
- ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
822
- r"""
823
- labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
824
- Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
825
- config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
826
- `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
827
- """
828
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
829
-
830
- transformer_outputs = self.model(
831
- input_ids,
832
- attention_mask=attention_mask,
833
- position_ids=position_ids,
834
- past_key_values=past_key_values,
835
- inputs_embeds=inputs_embeds,
836
- use_cache=use_cache,
837
- output_attentions=output_attentions,
838
- output_hidden_states=output_hidden_states,
839
- return_dict=return_dict,
840
- )
841
- hidden_states = transformer_outputs[0]
842
- logits = self.score(hidden_states)
843
-
844
- if input_ids is not None:
845
- batch_size = input_ids.shape[0]
846
- else:
847
- batch_size = inputs_embeds.shape[0]
848
-
849
- if self.config.pad_token_id is None and batch_size != 1:
850
- raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
851
- if self.config.pad_token_id is None:
852
- sequence_lengths = -1
853
- else:
854
- if input_ids is not None:
855
- sequence_lengths = (torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1).to(logits.device)
856
- else:
857
- sequence_lengths = -1
858
-
859
- pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
860
-
861
- loss = None
862
- if labels is not None:
863
- labels = labels.to(logits.device)
864
- if self.config.problem_type is None:
865
- if self.num_labels == 1:
866
- self.config.problem_type = "regression"
867
- elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
868
- self.config.problem_type = "single_label_classification"
869
- else:
870
- self.config.problem_type = "multi_label_classification"
871
-
872
- if self.config.problem_type == "regression":
873
- loss_fct = MSELoss()
874
- if self.num_labels == 1:
875
- loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
876
- else:
877
- loss = loss_fct(pooled_logits, labels)
878
- elif self.config.problem_type == "single_label_classification":
879
- loss_fct = CrossEntropyLoss()
880
- loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
881
- elif self.config.problem_type == "multi_label_classification":
882
- loss_fct = BCEWithLogitsLoss()
883
- loss = loss_fct(pooled_logits, labels)
884
- if not return_dict:
885
- output = (pooled_logits,) + transformer_outputs[1:]
886
- return ((loss,) + output) if loss is not None else output
887
-
888
- return SequenceClassifierOutputWithPast(
889
- loss=loss,
890
- logits=pooled_logits,
891
- past_key_values=transformer_outputs.past_key_values,
892
- hidden_states=transformer_outputs.hidden_states,
893
- attentions=transformer_outputs.attentions,
894
- )