|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import argparse |
|
|
|
import os, sys |
|
|
|
sys.path.append(os.getcwd()) |
|
|
|
|
|
import torch |
|
from PIL import Image |
|
from transformers import AutoModel, AutoConfig |
|
from transformers import CLIPImageProcessor, pipeline, CLIPTokenizer |
|
from EVA_CLIP_8B_448.configuration_evaclip import EvaCLIPConfig |
|
from EVA_CLIP_8B_448.modeling_evaclip import EvaCLIPModel |
|
|
|
KEYS_TO_MODIFY_MAPPING = { |
|
"cls_token":"embeddings.class_embedding", |
|
"pos_embed":"embeddings.position_embedding.weight", |
|
"patch_embed.proj":"embeddings.patch_embedding", |
|
".positional_embedding":".embeddings.position_embedding.weight", |
|
".token_embedding":".embeddings.token_embedding", |
|
"text.text_projection":"text_projection.weight", |
|
"mlp.c_fc":"mlp.fc1", |
|
"mlp.c_proj":"mlp.fc2", |
|
".proj.":".out_proj.", |
|
"q_bias":"q_proj.bias", |
|
"v_bias":"v_proj.bias", |
|
"out.":"out_proj.", |
|
"norm1":"layer_norm1", |
|
"norm2":"layer_norm2", |
|
"ln_1":"layer_norm1", |
|
"ln_2":"layer_norm2", |
|
"attn":"self_attn", |
|
"norm.":"post_layernorm.", |
|
"ln_final":"final_layer_norm", |
|
"visual.blocks":"vision_model.encoder.layers", |
|
"text.transformer.resblocks":"text_model.encoder.layers", |
|
"visual.head":"visual_projection", |
|
"visual.":"vision_model.", |
|
"text.":"text_model.", |
|
} |
|
|
|
def rename_state_dict(state_dict): |
|
model_state_dict = {} |
|
|
|
for key, value in state_dict.items(): |
|
|
|
for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): |
|
if key_to_modify in key: |
|
key = key.replace(key_to_modify, new_key) |
|
if "text_projection" in key: |
|
model_state_dict[key] = value.T |
|
elif "attn.qkv" in key: |
|
|
|
mixed_qkv = value |
|
qkv_dim = mixed_qkv.size(0) // 3 |
|
|
|
query_layer = mixed_qkv[:qkv_dim] |
|
key_layer = mixed_qkv[qkv_dim : qkv_dim * 2] |
|
value_layer = mixed_qkv[qkv_dim * 2 :] |
|
|
|
model_state_dict[key.replace("qkv", "q_proj")] = query_layer |
|
model_state_dict[key.replace("qkv", "k_proj")] = key_layer |
|
model_state_dict[key.replace("qkv", "v_proj")] = value_layer |
|
|
|
elif "attn.in_proj" in key: |
|
|
|
mixed_qkv = value |
|
qkv_dim = mixed_qkv.size(0) // 3 |
|
|
|
query_layer = mixed_qkv[:qkv_dim] |
|
key_layer = mixed_qkv[qkv_dim : qkv_dim * 2] |
|
value_layer = mixed_qkv[qkv_dim * 2 :] |
|
|
|
model_state_dict[key.replace("in_proj_", "q_proj.")] = query_layer |
|
model_state_dict[key.replace("in_proj_", "k_proj.")] = key_layer |
|
model_state_dict[key.replace("in_proj_", "v_proj.")] = value_layer |
|
|
|
elif "class_embedding" in key: |
|
model_state_dict[key] = value[0,0,:] |
|
elif "vision_model.embeddings.position_embedding" in key: |
|
model_state_dict[key] = value[0,:,:] |
|
|
|
else: |
|
model_state_dict[key] = value |
|
|
|
return model_state_dict |
|
|
|
def save_model_and_config(pytorch_dump_folder_path, hf_model, transformers_config): |
|
hf_model.save_pretrained(pytorch_dump_folder_path) |
|
transformers_config.save_pretrained(pytorch_dump_folder_path) |
|
|
|
def check_loaded_model(pytorch_dump_folder_path, tokenizer, processor, image, captions): |
|
hf_config = AutoConfig.from_pretrained(pytorch_dump_folder_path, trust_remote_code=True) |
|
hf_model = AutoModel.from_pretrained(pytorch_dump_folder_path, config=hf_config, trust_remote_code=True) |
|
detector = pipeline(model=hf_model, task="zero-shot-image-classification", tokenizer = tokenizer, image_processor=processor) |
|
detector_probs = detector(image, candidate_labels=captions) |
|
print(f"text_probs loaded hf_model using pipeline: {detector_probs}") |
|
|
|
def convert_evaclip_checkpoint(checkpoint_path, pytorch_dump_folder_path, config_path, image_path, save=False): |
|
processor = CLIPImageProcessor(size={"shortest_edge":448}, do_center_crop=True, crop_size=448) |
|
print(f"processor={str(processor)}") |
|
image = Image.open(image_path) |
|
captions = ["a diagram", "a dog", "a cat"] |
|
tokenizer = CLIPTokenizer.from_pretrained(pytorch_dump_folder_path) |
|
input_ids = tokenizer(captions, return_tensors="pt", padding=True).input_ids |
|
input_pixels = processor(images=image, size=448, return_tensors="pt", padding=True).pixel_values |
|
|
|
print("input_pixels.shape", input_pixels.shape) |
|
|
|
transformers_config = EvaCLIPConfig.from_pretrained(config_path) |
|
hf_model = EvaCLIPModel(transformers_config) |
|
pt_model_state_dict = torch.load(checkpoint_path, map_location="cpu") |
|
state_dict = rename_state_dict(pt_model_state_dict) |
|
|
|
hf_model.load_state_dict(state_dict, strict=True) |
|
|
|
with torch.no_grad(): |
|
image_features = hf_model.encode_image(input_pixels) |
|
text_features = hf_model.encode_text(input_ids) |
|
image_features /= image_features.norm(dim=-1, keepdim=True) |
|
text_features /= text_features.norm(dim=-1, keepdim=True) |
|
|
|
label_probs = (100.0 * image_features @ text_features.T).softmax(dim=-1) |
|
print(f"hf_model label probs: {label_probs}") |
|
|
|
if save: |
|
save_model_and_config(pytorch_dump_folder_path, hf_model, transformers_config) |
|
|
|
check_loaded_model(pytorch_dump_folder_path, tokenizer, processor, image, captions) |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--pytorch_dump_folder_path", default="EVA_CLIP_8B_448" ,type=str, help="Path to the output PyTorch model.") |
|
parser.add_argument("--checkpoint_path", default="EVA_CLIP_8B_psz14_plus_s0.6B.pt", type=str, help="Path to fairseq checkpoint" ) |
|
parser.add_argument("--config_path", default='EVA_CLIP_8B_448', type=str, help="Path to hf config.json of model to convert") |
|
parser.add_argument("--image_path", default='EVA_CLIP_8B_448/CLIP.png', type=str, help="Path to image") |
|
parser.add_argument("--save", default=False, action="store_true", help="Save the model and config to the pytorch_dump_folder_path. Default is True.") |
|
|
|
args = parser.parse_args() |
|
|
|
convert_evaclip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.image_path, args.save) |
|
|