upload pytorch_model-000{11..15}-of-00015.bin
Browse files- added_tokens.json +274 -0
- config.json +52 -0
- configuration_emu.py +77 -0
- constants.py +47 -0
- modeling_emu.py +257 -0
- modeling_llama.py +1013 -0
- pytorch_model-00011-of-00015.bin +3 -0
- pytorch_model-00012-of-00015.bin +3 -0
- pytorch_model-00013-of-00015.bin +3 -0
- pytorch_model-00014-of-00015.bin +3 -0
- pytorch_model-00015-of-00015.bin +3 -0
- pytorch_model.bin.index.json +0 -0
- special_tokens_map.json +285 -0
- tokenizer.model +3 -0
- tokenizer_config.json +34 -0
- visual.py +452 -0
added_tokens.json
ADDED
@@ -0,0 +1,274 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</delimiter_of_multi_objects/>": 32013,
|
3 |
+
"</object>": 32012,
|
4 |
+
"</phrase>": 32010,
|
5 |
+
"<REC>": 32014,
|
6 |
+
"<grounding>": 32008,
|
7 |
+
"<image>": 32003,
|
8 |
+
"<object>": 32011,
|
9 |
+
"<patch_index_0000>": 32015,
|
10 |
+
"<patch_index_0001>": 32016,
|
11 |
+
"<patch_index_0002>": 32017,
|
12 |
+
"<patch_index_0003>": 32018,
|
13 |
+
"<patch_index_0004>": 32019,
|
14 |
+
"<patch_index_0005>": 32020,
|
15 |
+
"<patch_index_0006>": 32021,
|
16 |
+
"<patch_index_0007>": 32022,
|
17 |
+
"<patch_index_0008>": 32023,
|
18 |
+
"<patch_index_0009>": 32024,
|
19 |
+
"<patch_index_0010>": 32025,
|
20 |
+
"<patch_index_0011>": 32026,
|
21 |
+
"<patch_index_0012>": 32027,
|
22 |
+
"<patch_index_0013>": 32028,
|
23 |
+
"<patch_index_0014>": 32029,
|
24 |
+
"<patch_index_0015>": 32030,
|
25 |
+
"<patch_index_0016>": 32031,
|
26 |
+
"<patch_index_0017>": 32032,
|
27 |
+
"<patch_index_0018>": 32033,
|
28 |
+
"<patch_index_0019>": 32034,
|
29 |
+
"<patch_index_0020>": 32035,
|
30 |
+
"<patch_index_0021>": 32036,
|
31 |
+
"<patch_index_0022>": 32037,
|
32 |
+
"<patch_index_0023>": 32038,
|
33 |
+
"<patch_index_0024>": 32039,
|
34 |
+
"<patch_index_0025>": 32040,
|
35 |
+
"<patch_index_0026>": 32041,
|
36 |
+
"<patch_index_0027>": 32042,
|
37 |
+
"<patch_index_0028>": 32043,
|
38 |
+
"<patch_index_0029>": 32044,
|
39 |
+
"<patch_index_0030>": 32045,
|
40 |
+
"<patch_index_0031>": 32046,
|
41 |
+
"<patch_index_0032>": 32047,
|
42 |
+
"<patch_index_0033>": 32048,
|
43 |
+
"<patch_index_0034>": 32049,
|
44 |
+
"<patch_index_0035>": 32050,
|
45 |
+
"<patch_index_0036>": 32051,
|
46 |
+
"<patch_index_0037>": 32052,
|
47 |
+
"<patch_index_0038>": 32053,
|
48 |
+
"<patch_index_0039>": 32054,
|
49 |
+
"<patch_index_0040>": 32055,
|
50 |
+
"<patch_index_0041>": 32056,
|
51 |
+
"<patch_index_0042>": 32057,
|
52 |
+
"<patch_index_0043>": 32058,
|
53 |
+
"<patch_index_0044>": 32059,
|
54 |
+
"<patch_index_0045>": 32060,
|
55 |
+
"<patch_index_0046>": 32061,
|
56 |
+
"<patch_index_0047>": 32062,
|
57 |
+
"<patch_index_0048>": 32063,
|
58 |
+
"<patch_index_0049>": 32064,
|
59 |
+
"<patch_index_0050>": 32065,
|
60 |
+
"<patch_index_0051>": 32066,
|
61 |
+
"<patch_index_0052>": 32067,
|
62 |
+
"<patch_index_0053>": 32068,
|
63 |
+
"<patch_index_0054>": 32069,
|
64 |
+
"<patch_index_0055>": 32070,
|
65 |
+
"<patch_index_0056>": 32071,
|
66 |
+
"<patch_index_0057>": 32072,
|
67 |
+
"<patch_index_0058>": 32073,
|
68 |
+
"<patch_index_0059>": 32074,
|
69 |
+
"<patch_index_0060>": 32075,
|
70 |
+
"<patch_index_0061>": 32076,
|
71 |
+
"<patch_index_0062>": 32077,
|
72 |
+
"<patch_index_0063>": 32078,
|
73 |
+
"<patch_index_0064>": 32079,
|
74 |
+
"<patch_index_0065>": 32080,
|
75 |
+
"<patch_index_0066>": 32081,
|
76 |
+
"<patch_index_0067>": 32082,
|
77 |
+
"<patch_index_0068>": 32083,
|
78 |
+
"<patch_index_0069>": 32084,
|
79 |
+
"<patch_index_0070>": 32085,
|
80 |
+
"<patch_index_0071>": 32086,
|
81 |
+
"<patch_index_0072>": 32087,
|
82 |
+
"<patch_index_0073>": 32088,
|
83 |
+
"<patch_index_0074>": 32089,
|
84 |
+
"<patch_index_0075>": 32090,
|
85 |
+
"<patch_index_0076>": 32091,
|
86 |
+
"<patch_index_0077>": 32092,
|
87 |
+
"<patch_index_0078>": 32093,
|
88 |
+
"<patch_index_0079>": 32094,
|
89 |
+
"<patch_index_0080>": 32095,
|
90 |
+
"<patch_index_0081>": 32096,
|
91 |
+
"<patch_index_0082>": 32097,
|
92 |
+
"<patch_index_0083>": 32098,
|
93 |
+
"<patch_index_0084>": 32099,
|
94 |
+
"<patch_index_0085>": 32100,
|
95 |
+
"<patch_index_0086>": 32101,
|
96 |
+
"<patch_index_0087>": 32102,
|
97 |
+
"<patch_index_0088>": 32103,
|
98 |
+
"<patch_index_0089>": 32104,
|
99 |
+
"<patch_index_0090>": 32105,
|
100 |
+
"<patch_index_0091>": 32106,
|
101 |
+
"<patch_index_0092>": 32107,
|
102 |
+
"<patch_index_0093>": 32108,
|
103 |
+
"<patch_index_0094>": 32109,
|
104 |
+
"<patch_index_0095>": 32110,
|
105 |
+
"<patch_index_0096>": 32111,
|
106 |
+
"<patch_index_0097>": 32112,
|
107 |
+
"<patch_index_0098>": 32113,
|
108 |
+
"<patch_index_0099>": 32114,
|
109 |
+
"<patch_index_0100>": 32115,
|
110 |
+
"<patch_index_0101>": 32116,
|
111 |
+
"<patch_index_0102>": 32117,
|
112 |
+
"<patch_index_0103>": 32118,
|
113 |
+
"<patch_index_0104>": 32119,
|
114 |
+
"<patch_index_0105>": 32120,
|
115 |
+
"<patch_index_0106>": 32121,
|
116 |
+
"<patch_index_0107>": 32122,
|
117 |
+
"<patch_index_0108>": 32123,
|
118 |
+
"<patch_index_0109>": 32124,
|
119 |
+
"<patch_index_0110>": 32125,
|
120 |
+
"<patch_index_0111>": 32126,
|
121 |
+
"<patch_index_0112>": 32127,
|
122 |
+
"<patch_index_0113>": 32128,
|
123 |
+
"<patch_index_0114>": 32129,
|
124 |
+
"<patch_index_0115>": 32130,
|
125 |
+
"<patch_index_0116>": 32131,
|
126 |
+
"<patch_index_0117>": 32132,
|
127 |
+
"<patch_index_0118>": 32133,
|
128 |
+
"<patch_index_0119>": 32134,
|
129 |
+
"<patch_index_0120>": 32135,
|
130 |
+
"<patch_index_0121>": 32136,
|
131 |
+
"<patch_index_0122>": 32137,
|
132 |
+
"<patch_index_0123>": 32138,
|
133 |
+
"<patch_index_0124>": 32139,
|
134 |
+
"<patch_index_0125>": 32140,
|
135 |
+
"<patch_index_0126>": 32141,
|
136 |
+
"<patch_index_0127>": 32142,
|
137 |
+
"<patch_index_0128>": 32143,
|
138 |
+
"<patch_index_0129>": 32144,
|
139 |
+
"<patch_index_0130>": 32145,
|
140 |
+
"<patch_index_0131>": 32146,
|
141 |
+
"<patch_index_0132>": 32147,
|
142 |
+
"<patch_index_0133>": 32148,
|
143 |
+
"<patch_index_0134>": 32149,
|
144 |
+
"<patch_index_0135>": 32150,
|
145 |
+
"<patch_index_0136>": 32151,
|
146 |
+
"<patch_index_0137>": 32152,
|
147 |
+
"<patch_index_0138>": 32153,
|
148 |
+
"<patch_index_0139>": 32154,
|
149 |
+
"<patch_index_0140>": 32155,
|
150 |
+
"<patch_index_0141>": 32156,
|
151 |
+
"<patch_index_0142>": 32157,
|
152 |
+
"<patch_index_0143>": 32158,
|
153 |
+
"<patch_index_0144>": 32159,
|
154 |
+
"<patch_index_0145>": 32160,
|
155 |
+
"<patch_index_0146>": 32161,
|
156 |
+
"<patch_index_0147>": 32162,
|
157 |
+
"<patch_index_0148>": 32163,
|
158 |
+
"<patch_index_0149>": 32164,
|
159 |
+
"<patch_index_0150>": 32165,
|
160 |
+
"<patch_index_0151>": 32166,
|
161 |
+
"<patch_index_0152>": 32167,
|
162 |
+
"<patch_index_0153>": 32168,
|
163 |
+
"<patch_index_0154>": 32169,
|
164 |
+
"<patch_index_0155>": 32170,
|
165 |
+
"<patch_index_0156>": 32171,
|
166 |
+
"<patch_index_0157>": 32172,
|
167 |
+
"<patch_index_0158>": 32173,
|
168 |
+
"<patch_index_0159>": 32174,
|
169 |
+
"<patch_index_0160>": 32175,
|
170 |
+
"<patch_index_0161>": 32176,
|
171 |
+
"<patch_index_0162>": 32177,
|
172 |
+
"<patch_index_0163>": 32178,
|
173 |
+
"<patch_index_0164>": 32179,
|
174 |
+
"<patch_index_0165>": 32180,
|
175 |
+
"<patch_index_0166>": 32181,
|
176 |
+
"<patch_index_0167>": 32182,
|
177 |
+
"<patch_index_0168>": 32183,
|
178 |
+
"<patch_index_0169>": 32184,
|
179 |
+
"<patch_index_0170>": 32185,
|
180 |
+
"<patch_index_0171>": 32186,
|
181 |
+
"<patch_index_0172>": 32187,
|
182 |
+
"<patch_index_0173>": 32188,
|
183 |
+
"<patch_index_0174>": 32189,
|
184 |
+
"<patch_index_0175>": 32190,
|
185 |
+
"<patch_index_0176>": 32191,
|
186 |
+
"<patch_index_0177>": 32192,
|
187 |
+
"<patch_index_0178>": 32193,
|
188 |
+
"<patch_index_0179>": 32194,
|
189 |
+
"<patch_index_0180>": 32195,
|
190 |
+
"<patch_index_0181>": 32196,
|
191 |
+
"<patch_index_0182>": 32197,
|
192 |
+
"<patch_index_0183>": 32198,
|
193 |
+
"<patch_index_0184>": 32199,
|
194 |
+
"<patch_index_0185>": 32200,
|
195 |
+
"<patch_index_0186>": 32201,
|
196 |
+
"<patch_index_0187>": 32202,
|
197 |
+
"<patch_index_0188>": 32203,
|
198 |
+
"<patch_index_0189>": 32204,
|
199 |
+
"<patch_index_0190>": 32205,
|
200 |
+
"<patch_index_0191>": 32206,
|
201 |
+
"<patch_index_0192>": 32207,
|
202 |
+
"<patch_index_0193>": 32208,
|
203 |
+
"<patch_index_0194>": 32209,
|
204 |
+
"<patch_index_0195>": 32210,
|
205 |
+
"<patch_index_0196>": 32211,
|
206 |
+
"<patch_index_0197>": 32212,
|
207 |
+
"<patch_index_0198>": 32213,
|
208 |
+
"<patch_index_0199>": 32214,
|
209 |
+
"<patch_index_0200>": 32215,
|
210 |
+
"<patch_index_0201>": 32216,
|
211 |
+
"<patch_index_0202>": 32217,
|
212 |
+
"<patch_index_0203>": 32218,
|
213 |
+
"<patch_index_0204>": 32219,
|
214 |
+
"<patch_index_0205>": 32220,
|
215 |
+
"<patch_index_0206>": 32221,
|
216 |
+
"<patch_index_0207>": 32222,
|
217 |
+
"<patch_index_0208>": 32223,
|
218 |
+
"<patch_index_0209>": 32224,
|
219 |
+
"<patch_index_0210>": 32225,
|
220 |
+
"<patch_index_0211>": 32226,
|
221 |
+
"<patch_index_0212>": 32227,
|
222 |
+
"<patch_index_0213>": 32228,
|
223 |
+
"<patch_index_0214>": 32229,
|
224 |
+
"<patch_index_0215>": 32230,
|
225 |
+
"<patch_index_0216>": 32231,
|
226 |
+
"<patch_index_0217>": 32232,
|
227 |
+
"<patch_index_0218>": 32233,
|
228 |
+
"<patch_index_0219>": 32234,
|
229 |
+
"<patch_index_0220>": 32235,
|
230 |
+
"<patch_index_0221>": 32236,
|
231 |
+
"<patch_index_0222>": 32237,
|
232 |
+
"<patch_index_0223>": 32238,
|
233 |
+
"<patch_index_0224>": 32239,
|
234 |
+
"<patch_index_0225>": 32240,
|
235 |
+
"<patch_index_0226>": 32241,
|
236 |
+
"<patch_index_0227>": 32242,
|
237 |
+
"<patch_index_0228>": 32243,
|
238 |
+
"<patch_index_0229>": 32244,
|
239 |
+
"<patch_index_0230>": 32245,
|
240 |
+
"<patch_index_0231>": 32246,
|
241 |
+
"<patch_index_0232>": 32247,
|
242 |
+
"<patch_index_0233>": 32248,
|
243 |
+
"<patch_index_0234>": 32249,
|
244 |
+
"<patch_index_0235>": 32250,
|
245 |
+
"<patch_index_0236>": 32251,
|
246 |
+
"<patch_index_0237>": 32252,
|
247 |
+
"<patch_index_0238>": 32253,
|
248 |
+
"<patch_index_0239>": 32254,
|
249 |
+
"<patch_index_0240>": 32255,
|
250 |
+
"<patch_index_0241>": 32256,
|
251 |
+
"<patch_index_0242>": 32257,
|
252 |
+
"<patch_index_0243>": 32258,
|
253 |
+
"<patch_index_0244>": 32259,
|
254 |
+
"<patch_index_0245>": 32260,
|
255 |
+
"<patch_index_0246>": 32261,
|
256 |
+
"<patch_index_0247>": 32262,
|
257 |
+
"<patch_index_0248>": 32263,
|
258 |
+
"<patch_index_0249>": 32264,
|
259 |
+
"<patch_index_0250>": 32265,
|
260 |
+
"<patch_index_0251>": 32266,
|
261 |
+
"<patch_index_0252>": 32267,
|
262 |
+
"<patch_index_0253>": 32268,
|
263 |
+
"<patch_index_0254>": 32269,
|
264 |
+
"<patch_index_0255>": 32270,
|
265 |
+
"<patch_index_0256>": 32271,
|
266 |
+
"<phrase>": 32009,
|
267 |
+
"[/IMG]": 32002,
|
268 |
+
"[/gIMG]": 32005,
|
269 |
+
"[EOC]": 32006,
|
270 |
+
"[IMG]": 32001,
|
271 |
+
"[PAD]": 32000,
|
272 |
+
"[VIDEO]": 32007,
|
273 |
+
"[gIMG]": 32004
|
274 |
+
}
|
config.json
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "emu2",
|
3 |
+
"architectures": [
|
4 |
+
"EmuForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_bias": false,
|
7 |
+
"attention_dropout": 0.0,
|
8 |
+
"auto_map": {
|
9 |
+
"AutoConfig": "configuration_emu.EmuConfig",
|
10 |
+
"AutoModelForCausalLM": "modeling_emu.EmuForCausalLM"
|
11 |
+
},
|
12 |
+
"bos_token_id": 1,
|
13 |
+
"d_model": 1792,
|
14 |
+
"eos_token_id": 2,
|
15 |
+
"hidden_act": "silu",
|
16 |
+
"hidden_size": 6656,
|
17 |
+
"initializer_range": 0.02,
|
18 |
+
"intermediate_size": 17920,
|
19 |
+
"llama_config_path": "/share/project/quansun/models/llm_models/llama/hf/llama-30b",
|
20 |
+
"max_position_embeddings": 2048,
|
21 |
+
"model_version": "base",
|
22 |
+
"num_attention_heads": 52,
|
23 |
+
"num_hidden_layers": 60,
|
24 |
+
"num_key_value_heads": 52,
|
25 |
+
"pad_token_id": 32000,
|
26 |
+
"pretraining_tp": 1,
|
27 |
+
"rms_norm_eps": 1e-06,
|
28 |
+
"rope_scaling": null,
|
29 |
+
"rope_theta": 10000.0,
|
30 |
+
"tie_word_embeddings": false,
|
31 |
+
"torch_dtype": "float32",
|
32 |
+
"transformers_version": "4.31.0",
|
33 |
+
"use_cache": true,
|
34 |
+
"vision_config": {
|
35 |
+
"drop_path_rate": 0,
|
36 |
+
"eva_model_name": "eva-clip-E-14-plus",
|
37 |
+
"head_width": 112,
|
38 |
+
"image_size": 448,
|
39 |
+
"intermediate_size": 15360,
|
40 |
+
"layer_norm_eps": 1e-06,
|
41 |
+
"layers": 64,
|
42 |
+
"mlp_ratio": 8.571428571428571,
|
43 |
+
"n_query": 64,
|
44 |
+
"patch_size": 14,
|
45 |
+
"postnorm": true,
|
46 |
+
"qkv_bias": true,
|
47 |
+
"v_query": 64,
|
48 |
+
"width": 1792,
|
49 |
+
"xattn": true
|
50 |
+
},
|
51 |
+
"vocab_size": 32272
|
52 |
+
}
|
configuration_emu.py
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Literal
|
2 |
+
from transformers import PretrainedConfig
|
3 |
+
|
4 |
+
|
5 |
+
class EmuConfig(PretrainedConfig):
|
6 |
+
_auto_class = "AutoConfig"
|
7 |
+
|
8 |
+
def __init__(
|
9 |
+
self,
|
10 |
+
vocab_size=32000,
|
11 |
+
hidden_size=4096,
|
12 |
+
intermediate_size=11008,
|
13 |
+
num_hidden_layers=32,
|
14 |
+
num_attention_heads=32,
|
15 |
+
hidden_act='silu',
|
16 |
+
max_position_embeddings=2048,
|
17 |
+
initializer_range=0.02,
|
18 |
+
rms_norm_eps=1e-06,
|
19 |
+
model_version: Literal["base", "chat"] = "base",
|
20 |
+
pad_token_id=0,
|
21 |
+
bos_token_id=1,
|
22 |
+
eos_token_id=2,
|
23 |
+
tie_word_embeddings=False,
|
24 |
+
use_cache=True,
|
25 |
+
pretraining_tp=1,
|
26 |
+
rope_theta=10000.0,
|
27 |
+
rope_scaling=None,
|
28 |
+
attention_bias=False,
|
29 |
+
attention_dropout=0.0,
|
30 |
+
**kwargs,
|
31 |
+
):
|
32 |
+
self.hidden_size = hidden_size
|
33 |
+
self.intermediate_size = intermediate_size
|
34 |
+
self.num_attention_heads = num_attention_heads
|
35 |
+
self.max_position_embeddings = max_position_embeddings
|
36 |
+
self.rms_norm_eps = rms_norm_eps
|
37 |
+
self.initializer_range = initializer_range
|
38 |
+
self.vocab_size = vocab_size
|
39 |
+
self.num_hidden_layers = num_hidden_layers
|
40 |
+
self.hidden_act = hidden_act
|
41 |
+
self.model_version = model_version
|
42 |
+
self.use_cache = use_cache
|
43 |
+
self.pretraining_tp = pretraining_tp
|
44 |
+
self.use_cache = use_cache
|
45 |
+
self.rope_theta = rope_theta
|
46 |
+
self.rope_scaling = rope_scaling
|
47 |
+
self._rope_scaling_validation()
|
48 |
+
self.attention_bias = attention_bias
|
49 |
+
self.attention_dropout = attention_dropout
|
50 |
+
super().__init__(
|
51 |
+
pad_token_id=pad_token_id,
|
52 |
+
bos_token_id=bos_token_id,
|
53 |
+
eos_token_id=eos_token_id,
|
54 |
+
tie_word_embeddings=tie_word_embeddings,
|
55 |
+
**kwargs,
|
56 |
+
)
|
57 |
+
|
58 |
+
def _rope_scaling_validation(self):
|
59 |
+
"""
|
60 |
+
Validate the `rope_scaling` configuration.
|
61 |
+
"""
|
62 |
+
if self.rope_scaling is None:
|
63 |
+
return
|
64 |
+
|
65 |
+
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
|
66 |
+
raise ValueError(
|
67 |
+
"`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, "
|
68 |
+
f"got {self.rope_scaling}"
|
69 |
+
)
|
70 |
+
rope_scaling_type = self.rope_scaling.get("type", None)
|
71 |
+
rope_scaling_factor = self.rope_scaling.get("factor", None)
|
72 |
+
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
|
73 |
+
raise ValueError(
|
74 |
+
f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
|
75 |
+
)
|
76 |
+
if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
|
77 |
+
raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")
|
constants.py
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EVA_IMAGE_SIZE = 448
|
2 |
+
OPENAI_DATASET_MEAN = (0.48145466, 0.4578275, 0.40821073)
|
3 |
+
OPENAI_DATASET_STD = (0.26862954, 0.26130258, 0.27577711)
|
4 |
+
|
5 |
+
DEFAULT_IMAGE_FILE_SUFFIX = ['jpg', '0.png', 'png', 'jpeg', 'webp']
|
6 |
+
DEFAULT_TEXT_FILE_SUFFIX = ['txt', '0.txt']
|
7 |
+
|
8 |
+
IGNORE_INDEX = -100
|
9 |
+
|
10 |
+
# special tokens
|
11 |
+
# START
|
12 |
+
DEFAULT_PAD_TOKEN = "[PAD]"
|
13 |
+
DEFAULT_BOS_TOKEN = '<s>'
|
14 |
+
DEFAULT_EOS_TOKEN = '</s>'
|
15 |
+
DEFAULT_UNK_TOKEN = "<unk>"
|
16 |
+
|
17 |
+
DEFAULT_IMG_TOKEN = "[IMG]"
|
18 |
+
DEFAULT_IMG_END_TOKEN = "[/IMG]"
|
19 |
+
DEFAULT_IMAGE_TOKEN = "<image>"
|
20 |
+
DEFAULT_gIMG_TOKEN = "[gIMG]"
|
21 |
+
DEFAULT_gIMG_END_TOKEN = "[/gIMG]"
|
22 |
+
DEFAULT_EOC_TOKEN = "[EOC]"
|
23 |
+
DEFAULT_VIDEO_TOKEN = "[VIDEO]"
|
24 |
+
|
25 |
+
GRD_SYMBOL = "<grounding>"
|
26 |
+
BOP_SYMBOL = "<phrase>"
|
27 |
+
EOP_SYMBOL = "</phrase>"
|
28 |
+
BOO_SYMBOL = "<object>"
|
29 |
+
EOO_SYMBOL = "</object>"
|
30 |
+
DOM_SYMBOL = "</delimiter_of_multi_objects/>"
|
31 |
+
|
32 |
+
REC_SYMBOL = "<REC>"
|
33 |
+
|
34 |
+
USER_TOKEN = "[USER]"
|
35 |
+
ASSISTANT_TOKEN = "[ASSISTANT]"
|
36 |
+
# END
|
37 |
+
|
38 |
+
# special token id
|
39 |
+
# START
|
40 |
+
IMAGE = 32003
|
41 |
+
BOI = 32001
|
42 |
+
|
43 |
+
# END
|
44 |
+
|
45 |
+
DEFAULT_IMG_PLACEHOLDER = "[<IMG_PLH>]"
|
46 |
+
DEFAULT_VID_PLACEHOLDER = "[<VID_PLH>]"
|
47 |
+
FAKE_VIDEO_END_TOKEN = "[/VIDEO]"
|
modeling_emu.py
ADDED
@@ -0,0 +1,257 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from functools import partial
|
2 |
+
from typing import Any, List, Optional, Mapping, Callable
|
3 |
+
from collections import OrderedDict
|
4 |
+
from argparse import Namespace
|
5 |
+
import torch
|
6 |
+
from torch import nn
|
7 |
+
import torch.nn.functional as F
|
8 |
+
import torchvision.transforms as T
|
9 |
+
import PIL
|
10 |
+
import transformers
|
11 |
+
from transformers import PreTrainedModel, PreTrainedTokenizer
|
12 |
+
|
13 |
+
from .configuration_emu import EmuConfig
|
14 |
+
from .constants import *
|
15 |
+
from .modeling_llama import LlamaForCausalLM
|
16 |
+
from .visual import EVAVisionTransformer
|
17 |
+
|
18 |
+
|
19 |
+
class EmuPreTrainedModel(PreTrainedModel):
|
20 |
+
config_class = EmuConfig
|
21 |
+
base_model_prefix = "model"
|
22 |
+
supports_gradient_checkpointing = False
|
23 |
+
_no_split_modules = ["LlamaDecoderLayer", "Block"]
|
24 |
+
_skip_keys_device_placement = "past_key_values"
|
25 |
+
|
26 |
+
def _init_weights(self, module):
|
27 |
+
std = self.config.initializer_range
|
28 |
+
if isinstance(module, nn.Linear):
|
29 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
30 |
+
if module.bias is not None:
|
31 |
+
module.bias.data.zero_()
|
32 |
+
elif isinstance(module, nn.Embedding):
|
33 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
34 |
+
if module.padding_idx is not None:
|
35 |
+
module.weight.data[module.padding_idx].zero_()
|
36 |
+
|
37 |
+
class EmuForClsAndRegression(EmuPreTrainedModel):
|
38 |
+
|
39 |
+
def __init__(self, config):
|
40 |
+
super(EmuForClsAndRegression, self).__init__(config)
|
41 |
+
|
42 |
+
self.lm = LlamaForCausalLM(config=config)
|
43 |
+
|
44 |
+
self.lm.model.embed_tokens.padding_idx = config.pad_token_id
|
45 |
+
|
46 |
+
def get_num_layers(self):
|
47 |
+
return len(self.lm.model.layers)
|
48 |
+
|
49 |
+
class EmuModel(EmuPreTrainedModel):
|
50 |
+
|
51 |
+
def __init__(self, config):
|
52 |
+
super().__init__(config)
|
53 |
+
|
54 |
+
vision_config = Namespace(**config.vision_config)
|
55 |
+
|
56 |
+
self.visual = EVAVisionTransformer(
|
57 |
+
img_size=vision_config.image_size,
|
58 |
+
patch_size=vision_config.patch_size,
|
59 |
+
embed_dim=vision_config.width,
|
60 |
+
depth=vision_config.layers,
|
61 |
+
num_heads=vision_config.width // vision_config.head_width,
|
62 |
+
mlp_ratio=vision_config.mlp_ratio,
|
63 |
+
qkv_bias=vision_config.qkv_bias,
|
64 |
+
drop_path_rate=vision_config.drop_path_rate,
|
65 |
+
norm_layer=partial(nn.LayerNorm, eps=vision_config.layer_norm_eps),
|
66 |
+
xattn=vision_config.xattn,
|
67 |
+
postnorm=vision_config.postnorm,
|
68 |
+
)
|
69 |
+
|
70 |
+
self.decoder = EmuForClsAndRegression(config)
|
71 |
+
|
72 |
+
self.gradient_checkpointing = False
|
73 |
+
|
74 |
+
self.n_query = vision_config.n_query
|
75 |
+
self.v_query = vision_config.v_query
|
76 |
+
|
77 |
+
@property
|
78 |
+
def device(self):
|
79 |
+
return next(iter(self.parameters())).device
|
80 |
+
|
81 |
+
@property
|
82 |
+
def dtype(self):
|
83 |
+
return next(iter(self.parameters())).dtype
|
84 |
+
|
85 |
+
@torch.no_grad()
|
86 |
+
def encode_image(self, image: torch.Tensor, *, n_query=None):
|
87 |
+
n_query = n_query if n_query is not None else self.n_query
|
88 |
+
|
89 |
+
image_embeds = self.visual(image)
|
90 |
+
image_embeds = image_embeds[:, 1:, :]
|
91 |
+
b, n, c = image_embeds.shape
|
92 |
+
sqrt_n = int(n**0.5)
|
93 |
+
image_embeds = image_embeds.permute(0, 2, 1).view(b, c, sqrt_n, sqrt_n)
|
94 |
+
|
95 |
+
stride = int(sqrt_n // (n_query ** 0.5))
|
96 |
+
image_embeds = F.avg_pool2d(image_embeds, kernel_size=(stride, stride), stride=stride)
|
97 |
+
image_embeds = image_embeds.view(b, c, -1).permute(0, 2, 1).contiguous()
|
98 |
+
return image_embeds
|
99 |
+
|
100 |
+
|
101 |
+
class EmuForCausalLM(EmuPreTrainedModel):
|
102 |
+
_auto_class = "AutoModelForCausalLM"
|
103 |
+
|
104 |
+
def __init__(self, config):
|
105 |
+
super().__init__(config)
|
106 |
+
|
107 |
+
self.config = config
|
108 |
+
self.model = EmuModel(config)
|
109 |
+
# LM to EVA
|
110 |
+
self.project_down = nn.Linear(config.hidden_size, config.d_model, bias=False)
|
111 |
+
# EVA to LM
|
112 |
+
self.project_up = nn.Linear(config.d_model, config.hidden_size, bias=False)
|
113 |
+
|
114 |
+
self.n_query = self.model.n_query
|
115 |
+
self.v_query = self.model.v_query
|
116 |
+
|
117 |
+
self.image_placeholder = DEFAULT_IMG_TOKEN + DEFAULT_IMAGE_TOKEN * self.n_query + DEFAULT_IMG_END_TOKEN
|
118 |
+
# temporarily borrow [gIMG] as the video frame feature placeholder.
|
119 |
+
self.video_placeholder = DEFAULT_IMG_TOKEN + DEFAULT_gIMG_TOKEN * self.v_query + DEFAULT_IMG_END_TOKEN
|
120 |
+
|
121 |
+
@property
|
122 |
+
def device(self):
|
123 |
+
return next(iter(self.parameters())).device
|
124 |
+
|
125 |
+
@property
|
126 |
+
def dtype(self):
|
127 |
+
return next(iter(self.parameters())).dtype
|
128 |
+
|
129 |
+
|
130 |
+
@torch.no_grad()
|
131 |
+
def generate(
|
132 |
+
self,
|
133 |
+
input_ids,
|
134 |
+
attention_mask,
|
135 |
+
image: Optional[torch.Tensor] = None,
|
136 |
+
video: Optional[torch.Tensor] = None,
|
137 |
+
num_beams=5,
|
138 |
+
max_new_tokens=10,
|
139 |
+
min_len=1,
|
140 |
+
do_sample=False,
|
141 |
+
penalty_alpha=None,
|
142 |
+
top_p=None,
|
143 |
+
top_k=None,
|
144 |
+
temperature=None,
|
145 |
+
length_penalty=-1,
|
146 |
+
repetition_penalty=1.0,
|
147 |
+
**kwargs
|
148 |
+
):
|
149 |
+
|
150 |
+
text_embeds = self.model.decoder.lm.model.embed_tokens(input_ids).to("cuda")
|
151 |
+
if image is not None:
|
152 |
+
prompt_image_embeds = self.model.encode_image(image, n_query=self.n_query)
|
153 |
+
_, _, c = prompt_image_embeds.shape
|
154 |
+
prompt_image_embeds = prompt_image_embeds.view(-1, c)
|
155 |
+
prompt_image_embeds = self.project_up(prompt_image_embeds)
|
156 |
+
image_idx = (input_ids == IMAGE)
|
157 |
+
text_embeds[image_idx] = prompt_image_embeds.to(text_embeds.device)
|
158 |
+
|
159 |
+
if video is not None:
|
160 |
+
prompt_video_embeds = self.model.encode_image(video, n_query=self.v_query)
|
161 |
+
_, _, c = prompt_video_embeds.shape
|
162 |
+
prompt_video_embeds = prompt_video_embeds.view(-1, c)
|
163 |
+
prompt_video_embeds = self.project_up(prompt_video_embeds)
|
164 |
+
video_idx = (input_ids == VIDEO)
|
165 |
+
text_embeds[video_idx] = prompt_video_embeds.to(text_embeds.device)
|
166 |
+
|
167 |
+
outputs = self.model.decoder.lm.generate(
|
168 |
+
inputs_embeds=text_embeds,
|
169 |
+
attention_mask=attention_mask,
|
170 |
+
do_sample=do_sample,
|
171 |
+
num_beams=num_beams,
|
172 |
+
max_new_tokens=max_new_tokens,
|
173 |
+
min_length=min_len,
|
174 |
+
length_penalty=length_penalty,
|
175 |
+
repetition_penalty=repetition_penalty,
|
176 |
+
penalty_alpha=penalty_alpha,
|
177 |
+
top_k=top_k,
|
178 |
+
top_p=top_p,
|
179 |
+
temperature=temperature,
|
180 |
+
**kwargs,
|
181 |
+
)
|
182 |
+
|
183 |
+
return outputs
|
184 |
+
|
185 |
+
def prepare_image_input(self, images):
|
186 |
+
image_size: int = self.config.vision_config['image_size']
|
187 |
+
transform = T.Compose(
|
188 |
+
[
|
189 |
+
T.Resize(
|
190 |
+
(image_size, image_size), interpolation=T.InterpolationMode.BICUBIC
|
191 |
+
),
|
192 |
+
T.ToTensor(),
|
193 |
+
T.Normalize(OPENAI_DATASET_MEAN, OPENAI_DATASET_STD),
|
194 |
+
]
|
195 |
+
)
|
196 |
+
images = [transform(image) for image in images]
|
197 |
+
return torch.stack(images, 0)
|
198 |
+
|
199 |
+
def _prepare_chat_template(self, text, system_msg=""):
|
200 |
+
text = [
|
201 |
+
system_msg + USER_TOKEN + ": " + t + ASSISTANT_TOKEN +":"
|
202 |
+
for t in text
|
203 |
+
]
|
204 |
+
return text
|
205 |
+
|
206 |
+
def prepare_text_input(
|
207 |
+
self,
|
208 |
+
text: List[str],
|
209 |
+
tokenizer: PreTrainedTokenizer,
|
210 |
+
image_placeholder: str = DEFAULT_IMG_PLACEHOLDER,
|
211 |
+
video_placeholder: str = DEFAULT_VID_PLACEHOLDER,
|
212 |
+
):
|
213 |
+
text = [
|
214 |
+
t.replace(image_placeholder, self.image_placeholder).replace(video_placeholder, self.video_placeholder)
|
215 |
+
for t in text
|
216 |
+
]
|
217 |
+
input_ids = tokenizer(text, padding="longest", return_tensors="pt")
|
218 |
+
return input_ids
|
219 |
+
|
220 |
+
|
221 |
+
def build_input_ids(
|
222 |
+
self,
|
223 |
+
text: List[str],
|
224 |
+
tokenizer: PreTrainedTokenizer,
|
225 |
+
image: Optional[List["PIL.Image"]] = None,
|
226 |
+
video: Optional[List["PIL.Image"]] = None,
|
227 |
+
system_msg: str = "",
|
228 |
+
to_cuda: bool = True
|
229 |
+
):
|
230 |
+
|
231 |
+
if self.config.model_version == "chat":
|
232 |
+
text = self._prepare_chat_template(text, system_msg)
|
233 |
+
|
234 |
+
if image is not None:
|
235 |
+
image = self.prepare_image_input(image)
|
236 |
+
if video is not None:
|
237 |
+
video = self.prepare_image_input(video)
|
238 |
+
inputs = self.prepare_text_input(text, tokenizer)
|
239 |
+
input_ids = inputs.input_ids
|
240 |
+
attention_mask = inputs.attention_mask
|
241 |
+
|
242 |
+
if to_cuda:
|
243 |
+
input_ids = input_ids.to("cuda")
|
244 |
+
attention_mask = attention_mask.to("cuda")
|
245 |
+
if image is not None:
|
246 |
+
image = image.to("cuda")
|
247 |
+
if video is not None:
|
248 |
+
video = video.to("cuda")
|
249 |
+
|
250 |
+
|
251 |
+
|
252 |
+
return {
|
253 |
+
'input_ids': input_ids,
|
254 |
+
'attention_mask': attention_mask,
|
255 |
+
'image': image,
|
256 |
+
'video': video
|
257 |
+
}
|
modeling_llama.py
ADDED
@@ -0,0 +1,1013 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
5 |
+
# and OPT implementations in this library. It has been modified from its
|
6 |
+
# original forms to accommodate minor architectural differences compared
|
7 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
8 |
+
#
|
9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
+
# you may not use this file except in compliance with the License.
|
11 |
+
# You may obtain a copy of the License at
|
12 |
+
#
|
13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
14 |
+
#
|
15 |
+
# Unless required by applicable law or agreed to in writing, software
|
16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
+
# See the License for the specific language governing permissions and
|
19 |
+
# limitations under the License.
|
20 |
+
""" PyTorch LLaMA model."""
|
21 |
+
import math
|
22 |
+
from typing import List, Optional, Tuple, Union
|
23 |
+
|
24 |
+
import torch
|
25 |
+
import torch.nn.functional as F
|
26 |
+
import torch.utils.checkpoint
|
27 |
+
from torch import nn
|
28 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
29 |
+
|
30 |
+
from transformers import PreTrainedModel
|
31 |
+
from transformers import LlamaConfig
|
32 |
+
from transformers.activations import ACT2FN
|
33 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast
|
34 |
+
from transformers.utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
|
35 |
+
|
36 |
+
|
37 |
+
|
38 |
+
logger = logging.get_logger(__name__)
|
39 |
+
|
40 |
+
_CONFIG_FOR_DOC = "LlamaConfig"
|
41 |
+
|
42 |
+
|
43 |
+
# Copied from transformers.models.bart.modeling_bart._make_causal_mask
|
44 |
+
def _make_causal_mask(
|
45 |
+
input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
|
46 |
+
):
|
47 |
+
"""
|
48 |
+
Make causal mask used for bi-directional self-attention.
|
49 |
+
"""
|
50 |
+
bsz, tgt_len = input_ids_shape
|
51 |
+
mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device)
|
52 |
+
mask_cond = torch.arange(mask.size(-1), device=device)
|
53 |
+
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
|
54 |
+
mask = mask.to(dtype)
|
55 |
+
|
56 |
+
if past_key_values_length > 0:
|
57 |
+
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
|
58 |
+
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
|
59 |
+
|
60 |
+
|
61 |
+
# Copied from transformers.models.bart.modeling_bart._expand_mask
|
62 |
+
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
|
63 |
+
"""
|
64 |
+
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
|
65 |
+
"""
|
66 |
+
bsz, src_len = mask.size()
|
67 |
+
tgt_len = tgt_len if tgt_len is not None else src_len
|
68 |
+
|
69 |
+
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
|
70 |
+
|
71 |
+
inverted_mask = 1.0 - expanded_mask
|
72 |
+
|
73 |
+
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
|
74 |
+
|
75 |
+
|
76 |
+
class LlamaRMSNorm(nn.Module):
|
77 |
+
def __init__(self, hidden_size, eps=1e-6):
|
78 |
+
"""
|
79 |
+
LlamaRMSNorm is equivalent to T5LayerNorm
|
80 |
+
"""
|
81 |
+
super().__init__()
|
82 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
83 |
+
self.variance_epsilon = eps
|
84 |
+
|
85 |
+
def forward(self, hidden_states):
|
86 |
+
input_dtype = hidden_states.dtype
|
87 |
+
hidden_states = hidden_states.to(torch.float32)
|
88 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
89 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
90 |
+
return self.weight * hidden_states.to(input_dtype)
|
91 |
+
|
92 |
+
|
93 |
+
class LlamaRotaryEmbedding(torch.nn.Module):
|
94 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
95 |
+
super().__init__()
|
96 |
+
|
97 |
+
self.dim = dim
|
98 |
+
self.max_position_embeddings = max_position_embeddings
|
99 |
+
self.base = base
|
100 |
+
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
|
101 |
+
self.register_buffer("inv_freq", inv_freq)
|
102 |
+
|
103 |
+
# Build here to make `torch.jit.trace` work.
|
104 |
+
self._set_cos_sin_cache(
|
105 |
+
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
|
106 |
+
)
|
107 |
+
|
108 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
109 |
+
self.max_seq_len_cached = seq_len
|
110 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
111 |
+
|
112 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
113 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
114 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
115 |
+
self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
|
116 |
+
self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
|
117 |
+
|
118 |
+
def forward(self, x, seq_len=None):
|
119 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
120 |
+
if seq_len > self.max_seq_len_cached:
|
121 |
+
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
|
122 |
+
|
123 |
+
return (
|
124 |
+
self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
|
125 |
+
self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
|
126 |
+
)
|
127 |
+
|
128 |
+
|
129 |
+
class LlamaLinearScalingRotaryEmbedding(LlamaRotaryEmbedding):
|
130 |
+
"""LlamaRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
|
131 |
+
|
132 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
|
133 |
+
self.scaling_factor = scaling_factor
|
134 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
135 |
+
|
136 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
137 |
+
self.max_seq_len_cached = seq_len
|
138 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
139 |
+
t = t / self.scaling_factor
|
140 |
+
|
141 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
142 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
143 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
144 |
+
self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
|
145 |
+
self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
|
146 |
+
|
147 |
+
|
148 |
+
class LlamaDynamicNTKScalingRotaryEmbedding(LlamaRotaryEmbedding):
|
149 |
+
"""LlamaRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
|
150 |
+
|
151 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
|
152 |
+
self.scaling_factor = scaling_factor
|
153 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
154 |
+
|
155 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
156 |
+
self.max_seq_len_cached = seq_len
|
157 |
+
|
158 |
+
if seq_len > self.max_position_embeddings:
|
159 |
+
base = self.base * (
|
160 |
+
(self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
|
161 |
+
) ** (self.dim / (self.dim - 2))
|
162 |
+
inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
|
163 |
+
self.register_buffer("inv_freq", inv_freq)
|
164 |
+
|
165 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
166 |
+
|
167 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
168 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
169 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
170 |
+
self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
|
171 |
+
self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
|
172 |
+
|
173 |
+
|
174 |
+
def rotate_half(x):
|
175 |
+
"""Rotates half the hidden dims of the input."""
|
176 |
+
x1 = x[..., : x.shape[-1] // 2]
|
177 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
178 |
+
return torch.cat((-x2, x1), dim=-1)
|
179 |
+
|
180 |
+
|
181 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
|
182 |
+
# The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
|
183 |
+
cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
|
184 |
+
sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
|
185 |
+
cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
|
186 |
+
sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
|
187 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
188 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
189 |
+
return q_embed, k_embed
|
190 |
+
|
191 |
+
|
192 |
+
class LlamaMLP(nn.Module):
|
193 |
+
def __init__(self, config):
|
194 |
+
super().__init__()
|
195 |
+
self.pretraining_tp = config.pretraining_tp
|
196 |
+
self.hidden_size = config.hidden_size
|
197 |
+
self.intermediate_size = config.intermediate_size
|
198 |
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
199 |
+
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
200 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
201 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
202 |
+
|
203 |
+
def forward(self, x):
|
204 |
+
if self.pretraining_tp > 1:
|
205 |
+
slice = self.intermediate_size // self.pretraining_tp
|
206 |
+
gate_proj_slices = self.gate_proj.weight.split(slice, dim=0)
|
207 |
+
up_proj_slices = self.up_proj.weight.split(slice, dim=0)
|
208 |
+
down_proj_slices = self.down_proj.weight.split(slice, dim=1)
|
209 |
+
|
210 |
+
gate_proj = torch.cat([F.linear(x, gate_proj_slices[i]) for i in range(self.pretraining_tp)], dim=-1)
|
211 |
+
up_proj = torch.cat([F.linear(x, up_proj_slices[i]) for i in range(self.pretraining_tp)], dim=-1)
|
212 |
+
|
213 |
+
intermediate_states = (self.act_fn(gate_proj) * up_proj).split(slice, dim=2)
|
214 |
+
down_proj = [F.linear(intermediate_states[i], down_proj_slices[i]) for i in range(self.pretraining_tp)]
|
215 |
+
down_proj = sum(down_proj)
|
216 |
+
else:
|
217 |
+
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
218 |
+
|
219 |
+
return down_proj
|
220 |
+
|
221 |
+
|
222 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
223 |
+
"""
|
224 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
225 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
226 |
+
"""
|
227 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
228 |
+
if n_rep == 1:
|
229 |
+
return hidden_states
|
230 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
231 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
232 |
+
|
233 |
+
|
234 |
+
class LlamaAttention(nn.Module):
|
235 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
236 |
+
|
237 |
+
def __init__(self, config: LlamaConfig):
|
238 |
+
super().__init__()
|
239 |
+
self.config = config
|
240 |
+
self.hidden_size = config.hidden_size
|
241 |
+
self.num_heads = config.num_attention_heads
|
242 |
+
self.head_dim = self.hidden_size // self.num_heads
|
243 |
+
self.num_key_value_heads = config.num_key_value_heads
|
244 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
245 |
+
self.pretraining_tp = config.pretraining_tp
|
246 |
+
self.max_position_embeddings = config.max_position_embeddings
|
247 |
+
|
248 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
249 |
+
raise ValueError(
|
250 |
+
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
251 |
+
f" and `num_heads`: {self.num_heads})."
|
252 |
+
)
|
253 |
+
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
|
254 |
+
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
255 |
+
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
256 |
+
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
|
257 |
+
self._init_rope()
|
258 |
+
|
259 |
+
def _init_rope(self):
|
260 |
+
if self.config.rope_scaling is None:
|
261 |
+
self.rotary_emb = LlamaRotaryEmbedding(self.head_dim, max_position_embeddings=self.max_position_embeddings)
|
262 |
+
else:
|
263 |
+
scaling_type = self.config.rope_scaling["type"]
|
264 |
+
scaling_factor = self.config.rope_scaling["factor"]
|
265 |
+
if scaling_type == "linear":
|
266 |
+
self.rotary_emb = LlamaLinearScalingRotaryEmbedding(
|
267 |
+
self.head_dim, max_position_embeddings=self.max_position_embeddings, scaling_factor=scaling_factor
|
268 |
+
)
|
269 |
+
elif scaling_type == "dynamic":
|
270 |
+
self.rotary_emb = LlamaDynamicNTKScalingRotaryEmbedding(
|
271 |
+
self.head_dim, max_position_embeddings=self.max_position_embeddings, scaling_factor=scaling_factor
|
272 |
+
)
|
273 |
+
else:
|
274 |
+
raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
|
275 |
+
|
276 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
277 |
+
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
278 |
+
|
279 |
+
def forward(
|
280 |
+
self,
|
281 |
+
hidden_states: torch.Tensor,
|
282 |
+
attention_mask: Optional[torch.Tensor] = None,
|
283 |
+
position_ids: Optional[torch.LongTensor] = None,
|
284 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
285 |
+
output_attentions: bool = False,
|
286 |
+
use_cache: bool = False,
|
287 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
288 |
+
bsz, q_len, _ = hidden_states.size()
|
289 |
+
|
290 |
+
if self.pretraining_tp > 1:
|
291 |
+
key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.pretraining_tp
|
292 |
+
query_slices = self.q_proj.weight.split((self.num_heads * self.head_dim) // self.pretraining_tp, dim=0)
|
293 |
+
key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
|
294 |
+
value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
|
295 |
+
|
296 |
+
query_states = [F.linear(hidden_states, query_slices[i]) for i in range(self.pretraining_tp)]
|
297 |
+
query_states = torch.cat(query_states, dim=-1)
|
298 |
+
|
299 |
+
key_states = [F.linear(hidden_states, key_slices[i]) for i in range(self.pretraining_tp)]
|
300 |
+
key_states = torch.cat(key_states, dim=-1)
|
301 |
+
|
302 |
+
value_states = [F.linear(hidden_states, value_slices[i]) for i in range(self.pretraining_tp)]
|
303 |
+
value_states = torch.cat(value_states, dim=-1)
|
304 |
+
|
305 |
+
else:
|
306 |
+
query_states = self.q_proj(hidden_states)
|
307 |
+
key_states = self.k_proj(hidden_states)
|
308 |
+
value_states = self.v_proj(hidden_states)
|
309 |
+
|
310 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
311 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
312 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
313 |
+
|
314 |
+
kv_seq_len = key_states.shape[-2]
|
315 |
+
if past_key_value is not None:
|
316 |
+
kv_seq_len += past_key_value[0].shape[-2]
|
317 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
318 |
+
|
319 |
+
# query_states, key_states, cos, sin, position_ids = query_states.to(hidden_states.device), key_states.to(hidden_states.device), cos.to(hidden_states.device), sin.to(hidden_states.device), position_ids.to(hidden_states.device)
|
320 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
321 |
+
|
322 |
+
if past_key_value is not None:
|
323 |
+
# reuse k, v, self_attention
|
324 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
325 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
326 |
+
|
327 |
+
past_key_value = (key_states, value_states) if use_cache else None
|
328 |
+
|
329 |
+
# repeat k/v heads if n_kv_heads < n_heads
|
330 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
331 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
332 |
+
|
333 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
334 |
+
|
335 |
+
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
336 |
+
raise ValueError(
|
337 |
+
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
|
338 |
+
f" {attn_weights.size()}"
|
339 |
+
)
|
340 |
+
|
341 |
+
if attention_mask is not None:
|
342 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
343 |
+
raise ValueError(
|
344 |
+
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
345 |
+
)
|
346 |
+
attn_weights = attn_weights + attention_mask
|
347 |
+
|
348 |
+
# upcast attention to fp32
|
349 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
350 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
351 |
+
|
352 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
353 |
+
raise ValueError(
|
354 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
355 |
+
f" {attn_output.size()}"
|
356 |
+
)
|
357 |
+
|
358 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
359 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
360 |
+
|
361 |
+
if self.pretraining_tp > 1:
|
362 |
+
attn_output = attn_output.split(self.hidden_size // self.pretraining_tp, dim=2)
|
363 |
+
o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.pretraining_tp, dim=1)
|
364 |
+
attn_output = sum([F.linear(attn_output[i], o_proj_slices[i]) for i in range(self.pretraining_tp)])
|
365 |
+
else:
|
366 |
+
attn_output = self.o_proj(attn_output)
|
367 |
+
|
368 |
+
if not output_attentions:
|
369 |
+
attn_weights = None
|
370 |
+
|
371 |
+
return attn_output, attn_weights, past_key_value
|
372 |
+
|
373 |
+
|
374 |
+
class LlamaDecoderLayer(nn.Module):
|
375 |
+
def __init__(self, config: LlamaConfig):
|
376 |
+
super().__init__()
|
377 |
+
self.hidden_size = config.hidden_size
|
378 |
+
self.self_attn = LlamaAttention(config=config)
|
379 |
+
self.mlp = LlamaMLP(config)
|
380 |
+
self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
381 |
+
self.post_attention_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
382 |
+
|
383 |
+
def forward(
|
384 |
+
self,
|
385 |
+
hidden_states: torch.Tensor,
|
386 |
+
attention_mask: Optional[torch.Tensor] = None,
|
387 |
+
position_ids: Optional[torch.LongTensor] = None,
|
388 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
389 |
+
output_attentions: Optional[bool] = False,
|
390 |
+
use_cache: Optional[bool] = False,
|
391 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
392 |
+
"""
|
393 |
+
Args:
|
394 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
395 |
+
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
|
396 |
+
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
397 |
+
output_attentions (`bool`, *optional*):
|
398 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
399 |
+
returned tensors for more detail.
|
400 |
+
use_cache (`bool`, *optional*):
|
401 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
402 |
+
(see `past_key_values`).
|
403 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
404 |
+
"""
|
405 |
+
|
406 |
+
residual = hidden_states
|
407 |
+
|
408 |
+
hidden_states = self.input_layernorm(hidden_states)
|
409 |
+
|
410 |
+
# Self Attention
|
411 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
412 |
+
hidden_states=hidden_states,
|
413 |
+
attention_mask=attention_mask,
|
414 |
+
position_ids=position_ids,
|
415 |
+
past_key_value=past_key_value,
|
416 |
+
output_attentions=output_attentions,
|
417 |
+
use_cache=use_cache,
|
418 |
+
)
|
419 |
+
hidden_states = residual + hidden_states
|
420 |
+
|
421 |
+
# Fully Connected
|
422 |
+
residual = hidden_states
|
423 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
424 |
+
hidden_states = self.mlp(hidden_states)
|
425 |
+
hidden_states = residual + hidden_states
|
426 |
+
|
427 |
+
outputs = (hidden_states,)
|
428 |
+
|
429 |
+
if output_attentions:
|
430 |
+
outputs += (self_attn_weights,)
|
431 |
+
|
432 |
+
if use_cache:
|
433 |
+
outputs += (present_key_value,)
|
434 |
+
|
435 |
+
return outputs
|
436 |
+
|
437 |
+
|
438 |
+
LLAMA_START_DOCSTRING = r"""
|
439 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
440 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
441 |
+
etc.)
|
442 |
+
|
443 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
444 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
445 |
+
and behavior.
|
446 |
+
|
447 |
+
Parameters:
|
448 |
+
config ([`LlamaConfig`]):
|
449 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
450 |
+
load the weights associated with the model, only the configuration. Check out the
|
451 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
452 |
+
"""
|
453 |
+
|
454 |
+
|
455 |
+
@add_start_docstrings(
|
456 |
+
"The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
|
457 |
+
LLAMA_START_DOCSTRING,
|
458 |
+
)
|
459 |
+
class LlamaPreTrainedModel(PreTrainedModel):
|
460 |
+
config_class = LlamaConfig
|
461 |
+
base_model_prefix = "model"
|
462 |
+
supports_gradient_checkpointing = True
|
463 |
+
_no_split_modules = ["LlamaDecoderLayer"]
|
464 |
+
_skip_keys_device_placement = "past_key_values"
|
465 |
+
|
466 |
+
def _init_weights(self, module):
|
467 |
+
std = self.config.initializer_range
|
468 |
+
if isinstance(module, nn.Linear):
|
469 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
470 |
+
if module.bias is not None:
|
471 |
+
module.bias.data.zero_()
|
472 |
+
elif isinstance(module, nn.Embedding):
|
473 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
474 |
+
if module.padding_idx is not None:
|
475 |
+
module.weight.data[module.padding_idx].zero_()
|
476 |
+
|
477 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
478 |
+
if isinstance(module, LlamaModel):
|
479 |
+
module.gradient_checkpointing = value
|
480 |
+
|
481 |
+
|
482 |
+
LLAMA_INPUTS_DOCSTRING = r"""
|
483 |
+
Args:
|
484 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
485 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
486 |
+
it.
|
487 |
+
|
488 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
489 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
490 |
+
|
491 |
+
[What are input IDs?](../glossary#input-ids)
|
492 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
493 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
494 |
+
|
495 |
+
- 1 for tokens that are **not masked**,
|
496 |
+
- 0 for tokens that are **masked**.
|
497 |
+
|
498 |
+
[What are attention masks?](../glossary#attention-mask)
|
499 |
+
|
500 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
501 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
502 |
+
|
503 |
+
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
|
504 |
+
`past_key_values`).
|
505 |
+
|
506 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
507 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
508 |
+
information on the default strategy.
|
509 |
+
|
510 |
+
- 1 indicates the head is **not masked**,
|
511 |
+
- 0 indicates the head is **masked**.
|
512 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
513 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
514 |
+
config.n_positions - 1]`.
|
515 |
+
|
516 |
+
[What are position IDs?](../glossary#position-ids)
|
517 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
518 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
519 |
+
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
|
520 |
+
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
|
521 |
+
|
522 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
523 |
+
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
|
524 |
+
|
525 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
526 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
527 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
528 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
529 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
530 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
531 |
+
model's internal embedding lookup matrix.
|
532 |
+
use_cache (`bool`, *optional*):
|
533 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
534 |
+
`past_key_values`).
|
535 |
+
output_attentions (`bool`, *optional*):
|
536 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
537 |
+
tensors for more detail.
|
538 |
+
output_hidden_states (`bool`, *optional*):
|
539 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
540 |
+
more detail.
|
541 |
+
return_dict (`bool`, *optional*):
|
542 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
543 |
+
"""
|
544 |
+
|
545 |
+
|
546 |
+
@add_start_docstrings(
|
547 |
+
"The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
|
548 |
+
LLAMA_START_DOCSTRING,
|
549 |
+
)
|
550 |
+
class LlamaModel(LlamaPreTrainedModel):
|
551 |
+
"""
|
552 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LlamaDecoderLayer`]
|
553 |
+
|
554 |
+
Args:
|
555 |
+
config: LlamaConfig
|
556 |
+
"""
|
557 |
+
|
558 |
+
def __init__(self, config: LlamaConfig):
|
559 |
+
super().__init__(config)
|
560 |
+
self.padding_idx = config.pad_token_id
|
561 |
+
self.vocab_size = config.vocab_size
|
562 |
+
|
563 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
564 |
+
self.layers = nn.ModuleList([LlamaDecoderLayer(config) for _ in range(config.num_hidden_layers)])
|
565 |
+
self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
566 |
+
|
567 |
+
self.gradient_checkpointing = False
|
568 |
+
# Initialize weights and apply final processing
|
569 |
+
self.post_init()
|
570 |
+
|
571 |
+
def get_input_embeddings(self):
|
572 |
+
return self.embed_tokens
|
573 |
+
|
574 |
+
def set_input_embeddings(self, value):
|
575 |
+
self.embed_tokens = value
|
576 |
+
|
577 |
+
# Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
|
578 |
+
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
|
579 |
+
# create causal mask
|
580 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
581 |
+
combined_attention_mask = None
|
582 |
+
if input_shape[-1] > 1:
|
583 |
+
combined_attention_mask = _make_causal_mask(
|
584 |
+
input_shape,
|
585 |
+
inputs_embeds.dtype,
|
586 |
+
device=inputs_embeds.device,
|
587 |
+
past_key_values_length=past_key_values_length,
|
588 |
+
)
|
589 |
+
|
590 |
+
if attention_mask is not None:
|
591 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
592 |
+
expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
|
593 |
+
inputs_embeds.device
|
594 |
+
)
|
595 |
+
combined_attention_mask = (
|
596 |
+
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
|
597 |
+
)
|
598 |
+
|
599 |
+
return combined_attention_mask
|
600 |
+
|
601 |
+
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
|
602 |
+
def forward(
|
603 |
+
self,
|
604 |
+
input_ids: torch.LongTensor = None,
|
605 |
+
attention_mask: Optional[torch.Tensor] = None,
|
606 |
+
position_ids: Optional[torch.LongTensor] = None,
|
607 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
608 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
609 |
+
use_cache: Optional[bool] = None,
|
610 |
+
output_attentions: Optional[bool] = None,
|
611 |
+
output_hidden_states: Optional[bool] = None,
|
612 |
+
return_dict: Optional[bool] = None,
|
613 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
614 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
615 |
+
output_hidden_states = (
|
616 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
617 |
+
)
|
618 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
619 |
+
|
620 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
621 |
+
|
622 |
+
# retrieve input_ids and inputs_embeds
|
623 |
+
if input_ids is not None and inputs_embeds is not None:
|
624 |
+
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
|
625 |
+
elif input_ids is not None:
|
626 |
+
batch_size, seq_length = input_ids.shape
|
627 |
+
elif inputs_embeds is not None:
|
628 |
+
batch_size, seq_length, _ = inputs_embeds.shape
|
629 |
+
else:
|
630 |
+
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
631 |
+
|
632 |
+
seq_length_with_past = seq_length
|
633 |
+
past_key_values_length = 0
|
634 |
+
|
635 |
+
if past_key_values is not None:
|
636 |
+
past_key_values_length = past_key_values[0][0].shape[2]
|
637 |
+
seq_length_with_past = seq_length_with_past + past_key_values_length
|
638 |
+
|
639 |
+
if position_ids is None:
|
640 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
641 |
+
position_ids = torch.arange(
|
642 |
+
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
643 |
+
)
|
644 |
+
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
|
645 |
+
else:
|
646 |
+
position_ids = position_ids.view(-1, seq_length).long()
|
647 |
+
|
648 |
+
if inputs_embeds is None:
|
649 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
650 |
+
# embed positions
|
651 |
+
if attention_mask is None:
|
652 |
+
attention_mask = torch.ones(
|
653 |
+
(batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
|
654 |
+
)
|
655 |
+
attention_mask = self._prepare_decoder_attention_mask(
|
656 |
+
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
|
657 |
+
)
|
658 |
+
|
659 |
+
hidden_states = inputs_embeds
|
660 |
+
|
661 |
+
if self.gradient_checkpointing and self.training:
|
662 |
+
if use_cache:
|
663 |
+
logger.warning_once(
|
664 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
665 |
+
)
|
666 |
+
use_cache = False
|
667 |
+
|
668 |
+
# decoder layers
|
669 |
+
all_hidden_states = () if output_hidden_states else None
|
670 |
+
all_self_attns = () if output_attentions else None
|
671 |
+
next_decoder_cache = () if use_cache else None
|
672 |
+
|
673 |
+
for idx, decoder_layer in enumerate(self.layers):
|
674 |
+
if output_hidden_states:
|
675 |
+
all_hidden_states += (hidden_states,)
|
676 |
+
|
677 |
+
past_key_value = past_key_values[idx] if past_key_values is not None else None
|
678 |
+
|
679 |
+
if self.gradient_checkpointing and self.training:
|
680 |
+
|
681 |
+
def create_custom_forward(module):
|
682 |
+
def custom_forward(*inputs):
|
683 |
+
# None for past_key_value
|
684 |
+
return module(*inputs, output_attentions, None)
|
685 |
+
|
686 |
+
return custom_forward
|
687 |
+
|
688 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
689 |
+
create_custom_forward(decoder_layer),
|
690 |
+
hidden_states,
|
691 |
+
attention_mask,
|
692 |
+
position_ids,
|
693 |
+
None,
|
694 |
+
)
|
695 |
+
else:
|
696 |
+
layer_outputs = decoder_layer(
|
697 |
+
hidden_states,
|
698 |
+
attention_mask=attention_mask,
|
699 |
+
position_ids=position_ids,
|
700 |
+
past_key_value=past_key_value,
|
701 |
+
output_attentions=output_attentions,
|
702 |
+
use_cache=use_cache,
|
703 |
+
)
|
704 |
+
|
705 |
+
hidden_states = layer_outputs[0]
|
706 |
+
|
707 |
+
if use_cache:
|
708 |
+
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
|
709 |
+
|
710 |
+
if output_attentions:
|
711 |
+
all_self_attns += (layer_outputs[1],)
|
712 |
+
|
713 |
+
hidden_states = self.norm(hidden_states)
|
714 |
+
|
715 |
+
# add hidden states from the last decoder layer
|
716 |
+
if output_hidden_states:
|
717 |
+
all_hidden_states += (hidden_states,)
|
718 |
+
|
719 |
+
next_cache = next_decoder_cache if use_cache else None
|
720 |
+
if not return_dict:
|
721 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
722 |
+
return BaseModelOutputWithPast(
|
723 |
+
last_hidden_state=hidden_states,
|
724 |
+
past_key_values=next_cache,
|
725 |
+
hidden_states=all_hidden_states,
|
726 |
+
attentions=all_self_attns,
|
727 |
+
)
|
728 |
+
|
729 |
+
|
730 |
+
class LlamaForCausalLM(LlamaPreTrainedModel):
|
731 |
+
_tied_weights_keys = ["lm_head.weight"]
|
732 |
+
|
733 |
+
def __init__(self, config):
|
734 |
+
super().__init__(config)
|
735 |
+
self.model = LlamaModel(config)
|
736 |
+
self.pretraining_tp = config.pretraining_tp
|
737 |
+
self.vocab_size = config.vocab_size
|
738 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
739 |
+
|
740 |
+
# Initialize weights and apply final processing
|
741 |
+
self.post_init()
|
742 |
+
|
743 |
+
def get_input_embeddings(self):
|
744 |
+
return self.model.embed_tokens
|
745 |
+
|
746 |
+
def set_input_embeddings(self, value):
|
747 |
+
self.model.embed_tokens = value
|
748 |
+
|
749 |
+
def get_output_embeddings(self):
|
750 |
+
return self.lm_head
|
751 |
+
|
752 |
+
def set_output_embeddings(self, new_embeddings):
|
753 |
+
self.lm_head = new_embeddings
|
754 |
+
|
755 |
+
def set_decoder(self, decoder):
|
756 |
+
self.model = decoder
|
757 |
+
|
758 |
+
def get_decoder(self):
|
759 |
+
return self.model
|
760 |
+
|
761 |
+
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
|
762 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
763 |
+
def forward(
|
764 |
+
self,
|
765 |
+
input_ids: torch.LongTensor = None,
|
766 |
+
attention_mask: Optional[torch.Tensor] = None,
|
767 |
+
position_ids: Optional[torch.LongTensor] = None,
|
768 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
769 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
770 |
+
labels: Optional[torch.LongTensor] = None,
|
771 |
+
use_cache: Optional[bool] = None,
|
772 |
+
output_attentions: Optional[bool] = None,
|
773 |
+
output_hidden_states: Optional[bool] = None,
|
774 |
+
return_dict: Optional[bool] = None,
|
775 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
776 |
+
r"""
|
777 |
+
Args:
|
778 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
779 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
780 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
781 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
782 |
+
|
783 |
+
Returns:
|
784 |
+
|
785 |
+
Example:
|
786 |
+
|
787 |
+
```python
|
788 |
+
>>> from transformers import AutoTokenizer, LlamaForCausalLM
|
789 |
+
|
790 |
+
>>> model = LlamaForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
|
791 |
+
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
|
792 |
+
|
793 |
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
794 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
795 |
+
|
796 |
+
>>> # Generate
|
797 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
798 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
799 |
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
800 |
+
```"""
|
801 |
+
|
802 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
803 |
+
output_hidden_states = (
|
804 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
805 |
+
)
|
806 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
807 |
+
|
808 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
809 |
+
outputs = self.model(
|
810 |
+
input_ids=input_ids,
|
811 |
+
attention_mask=attention_mask,
|
812 |
+
position_ids=position_ids,
|
813 |
+
past_key_values=past_key_values,
|
814 |
+
inputs_embeds=inputs_embeds,
|
815 |
+
use_cache=use_cache,
|
816 |
+
output_attentions=output_attentions,
|
817 |
+
output_hidden_states=output_hidden_states,
|
818 |
+
return_dict=return_dict,
|
819 |
+
)
|
820 |
+
|
821 |
+
hidden_states = outputs[0]
|
822 |
+
if self.pretraining_tp > 1:
|
823 |
+
lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.pretraining_tp, dim=0)
|
824 |
+
logits = [F.linear(hidden_states, lm_head_slices[i]) for i in range(self.pretraining_tp)]
|
825 |
+
logits = torch.cat(logits, dim=-1)
|
826 |
+
else:
|
827 |
+
logits = self.lm_head(hidden_states)
|
828 |
+
|
829 |
+
logits = logits.float()
|
830 |
+
|
831 |
+
loss = None
|
832 |
+
if labels is not None:
|
833 |
+
# Shift so that tokens < n predict n
|
834 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
835 |
+
shift_labels = labels[..., 1:].contiguous()
|
836 |
+
# Flatten the tokens
|
837 |
+
loss_fct = CrossEntropyLoss()
|
838 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
839 |
+
shift_labels = shift_labels.view(-1)
|
840 |
+
# Enable model parallelism
|
841 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
842 |
+
loss = loss_fct(shift_logits, shift_labels)
|
843 |
+
|
844 |
+
if not return_dict:
|
845 |
+
output = (logits,) + outputs[1:]
|
846 |
+
return (loss,) + output if loss is not None else output
|
847 |
+
|
848 |
+
return CausalLMOutputWithPast(
|
849 |
+
loss=loss,
|
850 |
+
logits=logits,
|
851 |
+
past_key_values=outputs.past_key_values,
|
852 |
+
hidden_states=outputs.hidden_states,
|
853 |
+
attentions=outputs.attentions,
|
854 |
+
)
|
855 |
+
|
856 |
+
def prepare_inputs_for_generation(
|
857 |
+
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
858 |
+
):
|
859 |
+
if past_key_values:
|
860 |
+
input_ids = input_ids[:, -1:]
|
861 |
+
|
862 |
+
position_ids = kwargs.get("position_ids", None)
|
863 |
+
if attention_mask is not None and position_ids is None:
|
864 |
+
# create position_ids on the fly for batch generation
|
865 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
866 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
867 |
+
if past_key_values:
|
868 |
+
position_ids = position_ids[:, -1].unsqueeze(-1)
|
869 |
+
|
870 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
871 |
+
if inputs_embeds is not None and past_key_values is None:
|
872 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
873 |
+
else:
|
874 |
+
model_inputs = {"input_ids": input_ids}
|
875 |
+
|
876 |
+
model_inputs.update(
|
877 |
+
{
|
878 |
+
"position_ids": position_ids,
|
879 |
+
"past_key_values": past_key_values,
|
880 |
+
"use_cache": kwargs.get("use_cache"),
|
881 |
+
"attention_mask": attention_mask,
|
882 |
+
}
|
883 |
+
)
|
884 |
+
return model_inputs
|
885 |
+
|
886 |
+
@staticmethod
|
887 |
+
def _reorder_cache(past_key_values, beam_idx):
|
888 |
+
reordered_past = ()
|
889 |
+
for layer_past in past_key_values:
|
890 |
+
reordered_past += (
|
891 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
892 |
+
)
|
893 |
+
return reordered_past
|
894 |
+
|
895 |
+
|
896 |
+
@add_start_docstrings(
|
897 |
+
"""
|
898 |
+
The LLaMa Model transformer with a sequence classification head on top (linear layer).
|
899 |
+
|
900 |
+
[`LlamaForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
901 |
+
(e.g. GPT-2) do.
|
902 |
+
|
903 |
+
Since it does classification on the last token, it requires to know the position of the last token. If a
|
904 |
+
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
905 |
+
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
906 |
+
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
907 |
+
each row of the batch).
|
908 |
+
""",
|
909 |
+
LLAMA_START_DOCSTRING,
|
910 |
+
)
|
911 |
+
class LlamaForSequenceClassification(LlamaPreTrainedModel):
|
912 |
+
def __init__(self, config):
|
913 |
+
super().__init__(config)
|
914 |
+
self.num_labels = config.num_labels
|
915 |
+
self.model = LlamaModel(config)
|
916 |
+
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
|
917 |
+
|
918 |
+
# Initialize weights and apply final processing
|
919 |
+
self.post_init()
|
920 |
+
|
921 |
+
def get_input_embeddings(self):
|
922 |
+
return self.model.embed_tokens
|
923 |
+
|
924 |
+
def set_input_embeddings(self, value):
|
925 |
+
self.model.embed_tokens = value
|
926 |
+
|
927 |
+
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
|
928 |
+
def forward(
|
929 |
+
self,
|
930 |
+
input_ids: torch.LongTensor = None,
|
931 |
+
attention_mask: Optional[torch.Tensor] = None,
|
932 |
+
position_ids: Optional[torch.LongTensor] = None,
|
933 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
934 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
935 |
+
labels: Optional[torch.LongTensor] = None,
|
936 |
+
use_cache: Optional[bool] = None,
|
937 |
+
output_attentions: Optional[bool] = None,
|
938 |
+
output_hidden_states: Optional[bool] = None,
|
939 |
+
return_dict: Optional[bool] = None,
|
940 |
+
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
941 |
+
r"""
|
942 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
943 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
944 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
945 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
946 |
+
"""
|
947 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
948 |
+
|
949 |
+
transformer_outputs = self.model(
|
950 |
+
input_ids,
|
951 |
+
attention_mask=attention_mask,
|
952 |
+
position_ids=position_ids,
|
953 |
+
past_key_values=past_key_values,
|
954 |
+
inputs_embeds=inputs_embeds,
|
955 |
+
use_cache=use_cache,
|
956 |
+
output_attentions=output_attentions,
|
957 |
+
output_hidden_states=output_hidden_states,
|
958 |
+
return_dict=return_dict,
|
959 |
+
)
|
960 |
+
hidden_states = transformer_outputs[0]
|
961 |
+
logits = self.score(hidden_states)
|
962 |
+
|
963 |
+
if input_ids is not None:
|
964 |
+
batch_size = input_ids.shape[0]
|
965 |
+
else:
|
966 |
+
batch_size = inputs_embeds.shape[0]
|
967 |
+
|
968 |
+
if self.config.pad_token_id is None and batch_size != 1:
|
969 |
+
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
|
970 |
+
if self.config.pad_token_id is None:
|
971 |
+
sequence_lengths = -1
|
972 |
+
else:
|
973 |
+
if input_ids is not None:
|
974 |
+
sequence_lengths = (torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1).to(logits.device)
|
975 |
+
else:
|
976 |
+
sequence_lengths = -1
|
977 |
+
|
978 |
+
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
979 |
+
|
980 |
+
loss = None
|
981 |
+
if labels is not None:
|
982 |
+
labels = labels.to(logits.device)
|
983 |
+
if self.config.problem_type is None:
|
984 |
+
if self.num_labels == 1:
|
985 |
+
self.config.problem_type = "regression"
|
986 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
987 |
+
self.config.problem_type = "single_label_classification"
|
988 |
+
else:
|
989 |
+
self.config.problem_type = "multi_label_classification"
|
990 |
+
|
991 |
+
if self.config.problem_type == "regression":
|
992 |
+
loss_fct = MSELoss()
|
993 |
+
if self.num_labels == 1:
|
994 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
995 |
+
else:
|
996 |
+
loss = loss_fct(pooled_logits, labels)
|
997 |
+
elif self.config.problem_type == "single_label_classification":
|
998 |
+
loss_fct = CrossEntropyLoss()
|
999 |
+
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
1000 |
+
elif self.config.problem_type == "multi_label_classification":
|
1001 |
+
loss_fct = BCEWithLogitsLoss()
|
1002 |
+
loss = loss_fct(pooled_logits, labels)
|
1003 |
+
if not return_dict:
|
1004 |
+
output = (pooled_logits,) + transformer_outputs[1:]
|
1005 |
+
return ((loss,) + output) if loss is not None else output
|
1006 |
+
|
1007 |
+
return SequenceClassifierOutputWithPast(
|
1008 |
+
loss=loss,
|
1009 |
+
logits=pooled_logits,
|
1010 |
+
past_key_values=transformer_outputs.past_key_values,
|
1011 |
+
hidden_states=transformer_outputs.hidden_states,
|
1012 |
+
attentions=transformer_outputs.attentions,
|
1013 |
+
)
|
pytorch_model-00011-of-00015.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2ebf69a9364df2647d0078297c7c02278c206743cfccc4e87d6cd7d0a615182e
|
3 |
+
size 9869481610
|
pytorch_model-00012-of-00015.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7b41947cb7afec198b922263622383683a806c5d92260077239d4fb98228f8e3
|
3 |
+
size 9869428168
|
pytorch_model-00013-of-00015.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4d795ce2b5c5c4ef27147ce747292af5b08fd012d801eef178e9a614cb3f3611
|
3 |
+
size 9746799126
|
pytorch_model-00014-of-00015.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:084f843048234cb4fea6d072d5b4a2fe512d22c9e8b72ae4ebfece51ae774ed3
|
3 |
+
size 9992164636
|
pytorch_model-00015-of-00015.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7261440c56819f0c2ac66561ab7487c6b984e9892b16e6e2034f4e75e8ef7291
|
3 |
+
size 9515461378
|
pytorch_model.bin.index.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
special_tokens_map.json
ADDED
@@ -0,0 +1,285 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"[IMG]",
|
4 |
+
"[/IMG]",
|
5 |
+
"<image>",
|
6 |
+
"[gIMG]",
|
7 |
+
"[/gIMG]",
|
8 |
+
"[EOC]",
|
9 |
+
"[VIDEO]",
|
10 |
+
"<grounding>",
|
11 |
+
"<phrase>",
|
12 |
+
"</phrase>",
|
13 |
+
"<object>",
|
14 |
+
"</object>",
|
15 |
+
"</delimiter_of_multi_objects/>",
|
16 |
+
"<REC>",
|
17 |
+
"<patch_index_0000>",
|
18 |
+
"<patch_index_0001>",
|
19 |
+
"<patch_index_0002>",
|
20 |
+
"<patch_index_0003>",
|
21 |
+
"<patch_index_0004>",
|
22 |
+
"<patch_index_0005>",
|
23 |
+
"<patch_index_0006>",
|
24 |
+
"<patch_index_0007>",
|
25 |
+
"<patch_index_0008>",
|
26 |
+
"<patch_index_0009>",
|
27 |
+
"<patch_index_0010>",
|
28 |
+
"<patch_index_0011>",
|
29 |
+
"<patch_index_0012>",
|
30 |
+
"<patch_index_0013>",
|
31 |
+
"<patch_index_0014>",
|
32 |
+
"<patch_index_0015>",
|
33 |
+
"<patch_index_0016>",
|
34 |
+
"<patch_index_0017>",
|
35 |
+
"<patch_index_0018>",
|
36 |
+
"<patch_index_0019>",
|
37 |
+
"<patch_index_0020>",
|
38 |
+
"<patch_index_0021>",
|
39 |
+
"<patch_index_0022>",
|
40 |
+
"<patch_index_0023>",
|
41 |
+
"<patch_index_0024>",
|
42 |
+
"<patch_index_0025>",
|
43 |
+
"<patch_index_0026>",
|
44 |
+
"<patch_index_0027>",
|
45 |
+
"<patch_index_0028>",
|
46 |
+
"<patch_index_0029>",
|
47 |
+
"<patch_index_0030>",
|
48 |
+
"<patch_index_0031>",
|
49 |
+
"<patch_index_0032>",
|
50 |
+
"<patch_index_0033>",
|
51 |
+
"<patch_index_0034>",
|
52 |
+
"<patch_index_0035>",
|
53 |
+
"<patch_index_0036>",
|
54 |
+
"<patch_index_0037>",
|
55 |
+
"<patch_index_0038>",
|
56 |
+
"<patch_index_0039>",
|
57 |
+
"<patch_index_0040>",
|
58 |
+
"<patch_index_0041>",
|
59 |
+
"<patch_index_0042>",
|
60 |
+
"<patch_index_0043>",
|
61 |
+
"<patch_index_0044>",
|
62 |
+
"<patch_index_0045>",
|
63 |
+
"<patch_index_0046>",
|
64 |
+
"<patch_index_0047>",
|
65 |
+
"<patch_index_0048>",
|
66 |
+
"<patch_index_0049>",
|
67 |
+
"<patch_index_0050>",
|
68 |
+
"<patch_index_0051>",
|
69 |
+
"<patch_index_0052>",
|
70 |
+
"<patch_index_0053>",
|
71 |
+
"<patch_index_0054>",
|
72 |
+
"<patch_index_0055>",
|
73 |
+
"<patch_index_0056>",
|
74 |
+
"<patch_index_0057>",
|
75 |
+
"<patch_index_0058>",
|
76 |
+
"<patch_index_0059>",
|
77 |
+
"<patch_index_0060>",
|
78 |
+
"<patch_index_0061>",
|
79 |
+
"<patch_index_0062>",
|
80 |
+
"<patch_index_0063>",
|
81 |
+
"<patch_index_0064>",
|
82 |
+
"<patch_index_0065>",
|
83 |
+
"<patch_index_0066>",
|
84 |
+
"<patch_index_0067>",
|
85 |
+
"<patch_index_0068>",
|
86 |
+
"<patch_index_0069>",
|
87 |
+
"<patch_index_0070>",
|
88 |
+
"<patch_index_0071>",
|
89 |
+
"<patch_index_0072>",
|
90 |
+
"<patch_index_0073>",
|
91 |
+
"<patch_index_0074>",
|
92 |
+
"<patch_index_0075>",
|
93 |
+
"<patch_index_0076>",
|
94 |
+
"<patch_index_0077>",
|
95 |
+
"<patch_index_0078>",
|
96 |
+
"<patch_index_0079>",
|
97 |
+
"<patch_index_0080>",
|
98 |
+
"<patch_index_0081>",
|
99 |
+
"<patch_index_0082>",
|
100 |
+
"<patch_index_0083>",
|
101 |
+
"<patch_index_0084>",
|
102 |
+
"<patch_index_0085>",
|
103 |
+
"<patch_index_0086>",
|
104 |
+
"<patch_index_0087>",
|
105 |
+
"<patch_index_0088>",
|
106 |
+
"<patch_index_0089>",
|
107 |
+
"<patch_index_0090>",
|
108 |
+
"<patch_index_0091>",
|
109 |
+
"<patch_index_0092>",
|
110 |
+
"<patch_index_0093>",
|
111 |
+
"<patch_index_0094>",
|
112 |
+
"<patch_index_0095>",
|
113 |
+
"<patch_index_0096>",
|
114 |
+
"<patch_index_0097>",
|
115 |
+
"<patch_index_0098>",
|
116 |
+
"<patch_index_0099>",
|
117 |
+
"<patch_index_0100>",
|
118 |
+
"<patch_index_0101>",
|
119 |
+
"<patch_index_0102>",
|
120 |
+
"<patch_index_0103>",
|
121 |
+
"<patch_index_0104>",
|
122 |
+
"<patch_index_0105>",
|
123 |
+
"<patch_index_0106>",
|
124 |
+
"<patch_index_0107>",
|
125 |
+
"<patch_index_0108>",
|
126 |
+
"<patch_index_0109>",
|
127 |
+
"<patch_index_0110>",
|
128 |
+
"<patch_index_0111>",
|
129 |
+
"<patch_index_0112>",
|
130 |
+
"<patch_index_0113>",
|
131 |
+
"<patch_index_0114>",
|
132 |
+
"<patch_index_0115>",
|
133 |
+
"<patch_index_0116>",
|
134 |
+
"<patch_index_0117>",
|
135 |
+
"<patch_index_0118>",
|
136 |
+
"<patch_index_0119>",
|
137 |
+
"<patch_index_0120>",
|
138 |
+
"<patch_index_0121>",
|
139 |
+
"<patch_index_0122>",
|
140 |
+
"<patch_index_0123>",
|
141 |
+
"<patch_index_0124>",
|
142 |
+
"<patch_index_0125>",
|
143 |
+
"<patch_index_0126>",
|
144 |
+
"<patch_index_0127>",
|
145 |
+
"<patch_index_0128>",
|
146 |
+
"<patch_index_0129>",
|
147 |
+
"<patch_index_0130>",
|
148 |
+
"<patch_index_0131>",
|
149 |
+
"<patch_index_0132>",
|
150 |
+
"<patch_index_0133>",
|
151 |
+
"<patch_index_0134>",
|
152 |
+
"<patch_index_0135>",
|
153 |
+
"<patch_index_0136>",
|
154 |
+
"<patch_index_0137>",
|
155 |
+
"<patch_index_0138>",
|
156 |
+
"<patch_index_0139>",
|
157 |
+
"<patch_index_0140>",
|
158 |
+
"<patch_index_0141>",
|
159 |
+
"<patch_index_0142>",
|
160 |
+
"<patch_index_0143>",
|
161 |
+
"<patch_index_0144>",
|
162 |
+
"<patch_index_0145>",
|
163 |
+
"<patch_index_0146>",
|
164 |
+
"<patch_index_0147>",
|
165 |
+
"<patch_index_0148>",
|
166 |
+
"<patch_index_0149>",
|
167 |
+
"<patch_index_0150>",
|
168 |
+
"<patch_index_0151>",
|
169 |
+
"<patch_index_0152>",
|
170 |
+
"<patch_index_0153>",
|
171 |
+
"<patch_index_0154>",
|
172 |
+
"<patch_index_0155>",
|
173 |
+
"<patch_index_0156>",
|
174 |
+
"<patch_index_0157>",
|
175 |
+
"<patch_index_0158>",
|
176 |
+
"<patch_index_0159>",
|
177 |
+
"<patch_index_0160>",
|
178 |
+
"<patch_index_0161>",
|
179 |
+
"<patch_index_0162>",
|
180 |
+
"<patch_index_0163>",
|
181 |
+
"<patch_index_0164>",
|
182 |
+
"<patch_index_0165>",
|
183 |
+
"<patch_index_0166>",
|
184 |
+
"<patch_index_0167>",
|
185 |
+
"<patch_index_0168>",
|
186 |
+
"<patch_index_0169>",
|
187 |
+
"<patch_index_0170>",
|
188 |
+
"<patch_index_0171>",
|
189 |
+
"<patch_index_0172>",
|
190 |
+
"<patch_index_0173>",
|
191 |
+
"<patch_index_0174>",
|
192 |
+
"<patch_index_0175>",
|
193 |
+
"<patch_index_0176>",
|
194 |
+
"<patch_index_0177>",
|
195 |
+
"<patch_index_0178>",
|
196 |
+
"<patch_index_0179>",
|
197 |
+
"<patch_index_0180>",
|
198 |
+
"<patch_index_0181>",
|
199 |
+
"<patch_index_0182>",
|
200 |
+
"<patch_index_0183>",
|
201 |
+
"<patch_index_0184>",
|
202 |
+
"<patch_index_0185>",
|
203 |
+
"<patch_index_0186>",
|
204 |
+
"<patch_index_0187>",
|
205 |
+
"<patch_index_0188>",
|
206 |
+
"<patch_index_0189>",
|
207 |
+
"<patch_index_0190>",
|
208 |
+
"<patch_index_0191>",
|
209 |
+
"<patch_index_0192>",
|
210 |
+
"<patch_index_0193>",
|
211 |
+
"<patch_index_0194>",
|
212 |
+
"<patch_index_0195>",
|
213 |
+
"<patch_index_0196>",
|
214 |
+
"<patch_index_0197>",
|
215 |
+
"<patch_index_0198>",
|
216 |
+
"<patch_index_0199>",
|
217 |
+
"<patch_index_0200>",
|
218 |
+
"<patch_index_0201>",
|
219 |
+
"<patch_index_0202>",
|
220 |
+
"<patch_index_0203>",
|
221 |
+
"<patch_index_0204>",
|
222 |
+
"<patch_index_0205>",
|
223 |
+
"<patch_index_0206>",
|
224 |
+
"<patch_index_0207>",
|
225 |
+
"<patch_index_0208>",
|
226 |
+
"<patch_index_0209>",
|
227 |
+
"<patch_index_0210>",
|
228 |
+
"<patch_index_0211>",
|
229 |
+
"<patch_index_0212>",
|
230 |
+
"<patch_index_0213>",
|
231 |
+
"<patch_index_0214>",
|
232 |
+
"<patch_index_0215>",
|
233 |
+
"<patch_index_0216>",
|
234 |
+
"<patch_index_0217>",
|
235 |
+
"<patch_index_0218>",
|
236 |
+
"<patch_index_0219>",
|
237 |
+
"<patch_index_0220>",
|
238 |
+
"<patch_index_0221>",
|
239 |
+
"<patch_index_0222>",
|
240 |
+
"<patch_index_0223>",
|
241 |
+
"<patch_index_0224>",
|
242 |
+
"<patch_index_0225>",
|
243 |
+
"<patch_index_0226>",
|
244 |
+
"<patch_index_0227>",
|
245 |
+
"<patch_index_0228>",
|
246 |
+
"<patch_index_0229>",
|
247 |
+
"<patch_index_0230>",
|
248 |
+
"<patch_index_0231>",
|
249 |
+
"<patch_index_0232>",
|
250 |
+
"<patch_index_0233>",
|
251 |
+
"<patch_index_0234>",
|
252 |
+
"<patch_index_0235>",
|
253 |
+
"<patch_index_0236>",
|
254 |
+
"<patch_index_0237>",
|
255 |
+
"<patch_index_0238>",
|
256 |
+
"<patch_index_0239>",
|
257 |
+
"<patch_index_0240>",
|
258 |
+
"<patch_index_0241>",
|
259 |
+
"<patch_index_0242>",
|
260 |
+
"<patch_index_0243>",
|
261 |
+
"<patch_index_0244>",
|
262 |
+
"<patch_index_0245>",
|
263 |
+
"<patch_index_0246>",
|
264 |
+
"<patch_index_0247>",
|
265 |
+
"<patch_index_0248>",
|
266 |
+
"<patch_index_0249>",
|
267 |
+
"<patch_index_0250>",
|
268 |
+
"<patch_index_0251>",
|
269 |
+
"<patch_index_0252>",
|
270 |
+
"<patch_index_0253>",
|
271 |
+
"<patch_index_0254>",
|
272 |
+
"<patch_index_0255>",
|
273 |
+
"<patch_index_0256>"
|
274 |
+
],
|
275 |
+
"bos_token": "<s>",
|
276 |
+
"eos_token": "</s>",
|
277 |
+
"pad_token": "[PAD]",
|
278 |
+
"unk_token": {
|
279 |
+
"content": "<unk>",
|
280 |
+
"lstrip": false,
|
281 |
+
"normalized": true,
|
282 |
+
"rstrip": false,
|
283 |
+
"single_word": false
|
284 |
+
}
|
285 |
+
}
|
tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
|
3 |
+
size 499723
|
tokenizer_config.json
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"bos_token": {
|
5 |
+
"__type": "AddedToken",
|
6 |
+
"content": "<s>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": true,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false
|
11 |
+
},
|
12 |
+
"clean_up_tokenization_spaces": false,
|
13 |
+
"eos_token": {
|
14 |
+
"__type": "AddedToken",
|
15 |
+
"content": "</s>",
|
16 |
+
"lstrip": false,
|
17 |
+
"normalized": true,
|
18 |
+
"rstrip": false,
|
19 |
+
"single_word": false
|
20 |
+
},
|
21 |
+
"legacy": true,
|
22 |
+
"model_max_length": 1000000000000000019884624838656,
|
23 |
+
"pad_token": null,
|
24 |
+
"sp_model_kwargs": {},
|
25 |
+
"tokenizer_class": "LlamaTokenizer",
|
26 |
+
"unk_token": {
|
27 |
+
"__type": "AddedToken",
|
28 |
+
"content": "<unk>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": true,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false
|
33 |
+
}
|
34 |
+
}
|
visual.py
ADDED
@@ -0,0 +1,452 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# --------------------------------------------------------
|
2 |
+
# Adapted from https://github.com/microsoft/unilm/tree/master/beit
|
3 |
+
# --------------------------------------------------------
|
4 |
+
|
5 |
+
import os
|
6 |
+
from functools import partial
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import torch.nn as nn
|
10 |
+
import torch.nn.functional as F
|
11 |
+
from torch.utils.checkpoint import checkpoint
|
12 |
+
|
13 |
+
try:
|
14 |
+
from timm.models.layers import drop_path, to_2tuple
|
15 |
+
except:
|
16 |
+
from timm.layers import drop_path, to_2tuple
|
17 |
+
|
18 |
+
try:
|
19 |
+
import xformers.ops as xops
|
20 |
+
except ImportError:
|
21 |
+
xops = None
|
22 |
+
print("Please 'pip install xformers'")
|
23 |
+
|
24 |
+
|
25 |
+
class PatchDropout(nn.Module):
|
26 |
+
"""
|
27 |
+
https://arxiv.org/abs/2212.00794
|
28 |
+
"""
|
29 |
+
|
30 |
+
def __init__(self, prob, exclude_first_token=True):
|
31 |
+
super().__init__()
|
32 |
+
assert 0 <= prob < 1.
|
33 |
+
self.prob = prob
|
34 |
+
self.exclude_first_token = exclude_first_token # exclude CLS token
|
35 |
+
print(f"os.getenv('RoPE')={os.getenv('RoPE')}")
|
36 |
+
|
37 |
+
def forward(self, x):
|
38 |
+
if not self.training or self.prob == 0.:
|
39 |
+
return x
|
40 |
+
|
41 |
+
if self.exclude_first_token:
|
42 |
+
cls_tokens, x = x[:, :1], x[:, 1:]
|
43 |
+
else:
|
44 |
+
cls_tokens = torch.jit.annotate(torch.Tensor, x[:, :1])
|
45 |
+
|
46 |
+
batch = x.size()[0]
|
47 |
+
num_tokens = x.size()[1]
|
48 |
+
|
49 |
+
batch_indices = torch.arange(batch)
|
50 |
+
batch_indices = batch_indices[..., None]
|
51 |
+
|
52 |
+
keep_prob = 1 - self.prob
|
53 |
+
num_patches_keep = max(1, int(num_tokens * keep_prob))
|
54 |
+
|
55 |
+
rand = torch.randn(batch, num_tokens)
|
56 |
+
patch_indices_keep = rand.topk(num_patches_keep, dim=-1).indices
|
57 |
+
|
58 |
+
x = x[batch_indices, patch_indices_keep]
|
59 |
+
|
60 |
+
if self.exclude_first_token:
|
61 |
+
x = torch.cat((cls_tokens, x), dim=1)
|
62 |
+
|
63 |
+
if self.training and os.getenv('RoPE') == '1':
|
64 |
+
return x, patch_indices_keep
|
65 |
+
|
66 |
+
return x
|
67 |
+
|
68 |
+
class DropPath(nn.Module):
|
69 |
+
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
70 |
+
"""
|
71 |
+
def __init__(self, drop_prob=None):
|
72 |
+
super(DropPath, self).__init__()
|
73 |
+
self.drop_prob = drop_prob
|
74 |
+
|
75 |
+
def forward(self, x):
|
76 |
+
return drop_path(x, self.drop_prob, self.training)
|
77 |
+
|
78 |
+
def extra_repr(self) -> str:
|
79 |
+
return 'p={}'.format(self.drop_prob)
|
80 |
+
|
81 |
+
|
82 |
+
class Mlp(nn.Module):
|
83 |
+
def __init__(
|
84 |
+
self,
|
85 |
+
in_features,
|
86 |
+
hidden_features=None,
|
87 |
+
out_features=None,
|
88 |
+
act_layer=nn.GELU,
|
89 |
+
norm_layer=nn.LayerNorm,
|
90 |
+
drop=0.,
|
91 |
+
subln=False,
|
92 |
+
|
93 |
+
):
|
94 |
+
super().__init__()
|
95 |
+
out_features = out_features or in_features
|
96 |
+
hidden_features = hidden_features or in_features
|
97 |
+
self.fc1 = nn.Linear(in_features, hidden_features)
|
98 |
+
self.act = act_layer()
|
99 |
+
|
100 |
+
self.ffn_ln = norm_layer(hidden_features) if subln else nn.Identity()
|
101 |
+
|
102 |
+
self.fc2 = nn.Linear(hidden_features, out_features)
|
103 |
+
self.drop = nn.Dropout(drop)
|
104 |
+
|
105 |
+
def forward(self, x):
|
106 |
+
x = self.fc1(x)
|
107 |
+
x = self.act(x)
|
108 |
+
# x = self.drop(x)
|
109 |
+
# commit this for the orignal BERT implement
|
110 |
+
x = self.ffn_ln(x)
|
111 |
+
|
112 |
+
x = self.fc2(x)
|
113 |
+
x = self.drop(x)
|
114 |
+
return x
|
115 |
+
|
116 |
+
class SwiGLU(nn.Module):
|
117 |
+
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.SiLU, drop=0.,
|
118 |
+
norm_layer=nn.LayerNorm, subln=False):
|
119 |
+
super().__init__()
|
120 |
+
out_features = out_features or in_features
|
121 |
+
hidden_features = hidden_features or in_features
|
122 |
+
|
123 |
+
self.w1 = nn.Linear(in_features, hidden_features)
|
124 |
+
self.w2 = nn.Linear(in_features, hidden_features)
|
125 |
+
|
126 |
+
self.act = act_layer()
|
127 |
+
self.ffn_ln = norm_layer(hidden_features) if subln else nn.Identity()
|
128 |
+
self.w3 = nn.Linear(hidden_features, out_features)
|
129 |
+
|
130 |
+
self.drop = nn.Dropout(drop)
|
131 |
+
|
132 |
+
def forward(self, x):
|
133 |
+
x1 = self.w1(x)
|
134 |
+
x2 = self.w2(x)
|
135 |
+
hidden = self.act(x1) * x2
|
136 |
+
x = self.ffn_ln(hidden)
|
137 |
+
x = self.w3(x)
|
138 |
+
x = self.drop(x)
|
139 |
+
return x
|
140 |
+
|
141 |
+
class Attention(nn.Module):
|
142 |
+
def __init__(
|
143 |
+
self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0.,
|
144 |
+
proj_drop=0., window_size=None, attn_head_dim=None, xattn=False, rope=None, subln=False, norm_layer=nn.LayerNorm):
|
145 |
+
super().__init__()
|
146 |
+
self.num_heads = num_heads
|
147 |
+
head_dim = dim // num_heads
|
148 |
+
if attn_head_dim is not None:
|
149 |
+
head_dim = attn_head_dim
|
150 |
+
all_head_dim = head_dim * self.num_heads
|
151 |
+
self.scale = qk_scale or head_dim ** -0.5
|
152 |
+
|
153 |
+
self.subln = subln
|
154 |
+
if self.subln:
|
155 |
+
self.q_proj = nn.Linear(dim, all_head_dim, bias=False)
|
156 |
+
self.k_proj = nn.Linear(dim, all_head_dim, bias=False)
|
157 |
+
self.v_proj = nn.Linear(dim, all_head_dim, bias=False)
|
158 |
+
else:
|
159 |
+
if qkv_bias:
|
160 |
+
self.qkv = nn.Linear(dim, all_head_dim * 3, bias=True)
|
161 |
+
else:
|
162 |
+
self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False)
|
163 |
+
|
164 |
+
# if qkv_bias:
|
165 |
+
# self.q_bias = nn.Parameter(torch.zeros(all_head_dim))
|
166 |
+
# self.v_bias = nn.Parameter(torch.zeros(all_head_dim))
|
167 |
+
# qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias))
|
168 |
+
# self.qkv.bias.data = qkv_bias
|
169 |
+
# else:
|
170 |
+
# self.q_bias = None
|
171 |
+
# self.v_bias = None
|
172 |
+
|
173 |
+
self.window_size = None
|
174 |
+
self.relative_position_bias_table = None
|
175 |
+
self.relative_position_index = None
|
176 |
+
|
177 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
178 |
+
self.inner_attn_ln = norm_layer(all_head_dim) if subln else nn.Identity()
|
179 |
+
# self.proj = nn.Linear(all_head_dim, all_head_dim)
|
180 |
+
self.proj = nn.Linear(all_head_dim, dim)
|
181 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
182 |
+
self.xattn = xattn
|
183 |
+
self.xattn_drop = attn_drop
|
184 |
+
|
185 |
+
self.rope = rope
|
186 |
+
|
187 |
+
def forward(self, x, rel_pos_bias=None, attn_mask=None):
|
188 |
+
B, N, C = x.shape
|
189 |
+
if self.subln:
|
190 |
+
q = F.linear(input=x, weight=self.q_proj.weight, bias=self.q_bias)
|
191 |
+
k = F.linear(input=x, weight=self.k_proj.weight, bias=None)
|
192 |
+
v = F.linear(input=x, weight=self.v_proj.weight, bias=self.v_bias)
|
193 |
+
|
194 |
+
q = q.reshape(B, N, self.num_heads, -1).permute(0, 2, 1, 3) # B, num_heads, N, C
|
195 |
+
k = k.reshape(B, N, self.num_heads, -1).permute(0, 2, 1, 3)
|
196 |
+
v = v.reshape(B, N, self.num_heads, -1).permute(0, 2, 1, 3)
|
197 |
+
else:
|
198 |
+
|
199 |
+
# qkv_bias = None
|
200 |
+
# if self.q_bias is not None:
|
201 |
+
# qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias))
|
202 |
+
|
203 |
+
# qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias)
|
204 |
+
|
205 |
+
qkv = self.qkv(x)
|
206 |
+
|
207 |
+
qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) # 3, B, num_heads, N, C
|
208 |
+
q, k, v = qkv[0], qkv[1], qkv[2]
|
209 |
+
|
210 |
+
if self.rope:
|
211 |
+
q_t = q[:, :, 1:, :]
|
212 |
+
ro_q_t = self.rope(q_t)
|
213 |
+
q = torch.cat((q[:, :, :1, :], ro_q_t), -2).type_as(v)
|
214 |
+
|
215 |
+
k_t = k[:, :, 1:, :]
|
216 |
+
ro_k_t = self.rope(k_t)
|
217 |
+
k = torch.cat((k[:, :, :1, :], ro_k_t), -2).type_as(v)
|
218 |
+
|
219 |
+
if self.xattn:
|
220 |
+
q = q.permute(0, 2, 1, 3) # B, num_heads, N, C -> B, N, num_heads, C
|
221 |
+
k = k.permute(0, 2, 1, 3)
|
222 |
+
v = v.permute(0, 2, 1, 3)
|
223 |
+
|
224 |
+
x = xops.memory_efficient_attention(
|
225 |
+
q, k, v,
|
226 |
+
p=self.xattn_drop,
|
227 |
+
scale=self.scale,
|
228 |
+
)
|
229 |
+
x = x.reshape(B, N, -1)
|
230 |
+
x = self.inner_attn_ln(x)
|
231 |
+
x = self.proj(x)
|
232 |
+
x = self.proj_drop(x)
|
233 |
+
else:
|
234 |
+
q = q * self.scale
|
235 |
+
attn = (q @ k.transpose(-2, -1))
|
236 |
+
|
237 |
+
if self.relative_position_bias_table is not None:
|
238 |
+
relative_position_bias = \
|
239 |
+
self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
|
240 |
+
self.window_size[0] * self.window_size[1] + 1,
|
241 |
+
self.window_size[0] * self.window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH
|
242 |
+
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
|
243 |
+
attn = attn + relative_position_bias.unsqueeze(0).type_as(attn)
|
244 |
+
|
245 |
+
if rel_pos_bias is not None:
|
246 |
+
attn = attn + rel_pos_bias.type_as(attn)
|
247 |
+
|
248 |
+
if attn_mask is not None:
|
249 |
+
attn_mask = attn_mask.bool()
|
250 |
+
attn = attn.masked_fill(~attn_mask[:, None, None, :], float("-inf"))
|
251 |
+
|
252 |
+
attn = attn.softmax(dim=-1)
|
253 |
+
attn = self.attn_drop(attn)
|
254 |
+
|
255 |
+
x = (attn @ v).transpose(1, 2).reshape(B, N, -1)
|
256 |
+
x = self.inner_attn_ln(x)
|
257 |
+
x = self.proj(x)
|
258 |
+
x = self.proj_drop(x)
|
259 |
+
return x
|
260 |
+
|
261 |
+
|
262 |
+
class Block(nn.Module):
|
263 |
+
|
264 |
+
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
|
265 |
+
drop_path=0., init_values=None, act_layer=nn.GELU, norm_layer=nn.LayerNorm,
|
266 |
+
window_size=None, attn_head_dim=None, xattn=False, rope=None, postnorm=False,
|
267 |
+
subln=False, naiveswiglu=False):
|
268 |
+
super().__init__()
|
269 |
+
self.norm1 = norm_layer(dim)
|
270 |
+
self.attn = Attention(
|
271 |
+
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
|
272 |
+
attn_drop=attn_drop, proj_drop=drop, window_size=window_size, attn_head_dim=attn_head_dim,
|
273 |
+
xattn=xattn, rope=rope, subln=subln, norm_layer=norm_layer)
|
274 |
+
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
|
275 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
276 |
+
self.norm2 = norm_layer(dim)
|
277 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
278 |
+
|
279 |
+
if naiveswiglu:
|
280 |
+
self.mlp = SwiGLU(
|
281 |
+
in_features=dim,
|
282 |
+
hidden_features=mlp_hidden_dim,
|
283 |
+
subln=subln,
|
284 |
+
norm_layer=norm_layer,
|
285 |
+
)
|
286 |
+
else:
|
287 |
+
self.mlp = Mlp(
|
288 |
+
in_features=dim,
|
289 |
+
hidden_features=mlp_hidden_dim,
|
290 |
+
act_layer=act_layer,
|
291 |
+
subln=subln,
|
292 |
+
drop=drop
|
293 |
+
)
|
294 |
+
|
295 |
+
if init_values is not None and init_values > 0:
|
296 |
+
self.gamma_1 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True)
|
297 |
+
self.gamma_2 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True)
|
298 |
+
else:
|
299 |
+
self.gamma_1, self.gamma_2 = None, None
|
300 |
+
|
301 |
+
self.postnorm = postnorm
|
302 |
+
|
303 |
+
def forward(self, x, rel_pos_bias=None, attn_mask=None):
|
304 |
+
if self.gamma_1 is None:
|
305 |
+
if self.postnorm:
|
306 |
+
x = x + self.drop_path(self.norm1(self.attn(x, rel_pos_bias=rel_pos_bias, attn_mask=attn_mask)))
|
307 |
+
x = x + self.drop_path(self.norm2(self.mlp(x)))
|
308 |
+
else:
|
309 |
+
x = x + self.drop_path(self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias, attn_mask=attn_mask))
|
310 |
+
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
311 |
+
else:
|
312 |
+
if self.postnorm:
|
313 |
+
x = x + self.drop_path(self.gamma_1 * self.norm1(self.attn(x, rel_pos_bias=rel_pos_bias, attn_mask=attn_mask)))
|
314 |
+
x = x + self.drop_path(self.gamma_2 * self.norm2(self.mlp(x)))
|
315 |
+
else:
|
316 |
+
x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias, attn_mask=attn_mask))
|
317 |
+
x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x)))
|
318 |
+
return x
|
319 |
+
|
320 |
+
|
321 |
+
class PatchEmbed(nn.Module):
|
322 |
+
""" Image to Patch Embedding
|
323 |
+
"""
|
324 |
+
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768):
|
325 |
+
super().__init__()
|
326 |
+
img_size = to_2tuple(img_size)
|
327 |
+
patch_size = to_2tuple(patch_size)
|
328 |
+
num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0])
|
329 |
+
self.patch_shape = (img_size[0] // patch_size[0], img_size[1] // patch_size[1])
|
330 |
+
self.img_size = img_size
|
331 |
+
self.patch_size = patch_size
|
332 |
+
self.num_patches = num_patches
|
333 |
+
|
334 |
+
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
|
335 |
+
|
336 |
+
def forward(self, x, **kwargs):
|
337 |
+
B, C, H, W = x.shape
|
338 |
+
# FIXME look at relaxing size constraints
|
339 |
+
assert H == self.img_size[0] and W == self.img_size[1], \
|
340 |
+
f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
|
341 |
+
x = self.proj(x).flatten(2).transpose(1, 2)
|
342 |
+
return x
|
343 |
+
|
344 |
+
|
345 |
+
class EVAVisionTransformer(nn.Module):
|
346 |
+
""" Vision Transformer with support for patch or hybrid CNN input stage
|
347 |
+
"""
|
348 |
+
def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12,
|
349 |
+
num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0.,
|
350 |
+
drop_path_rate=0., norm_layer=nn.LayerNorm, init_values=None, patch_dropout=0.,
|
351 |
+
use_abs_pos_emb=True, use_rel_pos_bias=False, use_shared_rel_pos_bias=False, rope=False,
|
352 |
+
use_mean_pooling=True, init_scale=0.001, grad_checkpointing=False, xattn=False, postnorm=False,
|
353 |
+
pt_hw_seq_len=16, intp_freq=False, naiveswiglu=False, subln=False,
|
354 |
+
):
|
355 |
+
super().__init__()
|
356 |
+
self.image_size = img_size
|
357 |
+
# self.num_classes = num_classes
|
358 |
+
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
|
359 |
+
|
360 |
+
self.patch_embed = PatchEmbed(
|
361 |
+
img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)
|
362 |
+
num_patches = self.patch_embed.num_patches
|
363 |
+
|
364 |
+
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
|
365 |
+
if use_abs_pos_emb:
|
366 |
+
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
|
367 |
+
else:
|
368 |
+
self.pos_embed = None
|
369 |
+
self.pos_drop = nn.Dropout(p=drop_rate)
|
370 |
+
|
371 |
+
self.rel_pos_bias = None
|
372 |
+
self.rope = None
|
373 |
+
|
374 |
+
self.naiveswiglu = naiveswiglu
|
375 |
+
|
376 |
+
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
|
377 |
+
self.use_rel_pos_bias = use_rel_pos_bias
|
378 |
+
self.blocks = nn.ModuleList([
|
379 |
+
Block(
|
380 |
+
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
|
381 |
+
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer,
|
382 |
+
init_values=init_values, window_size=self.patch_embed.patch_shape if use_rel_pos_bias else None,
|
383 |
+
xattn=xattn, rope=self.rope, postnorm=postnorm, subln=subln, naiveswiglu=naiveswiglu)
|
384 |
+
for i in range(depth)])
|
385 |
+
|
386 |
+
# setting a patch_dropout of 0. would mean it is disabled and this function would be the identity fn
|
387 |
+
self.patch_dropout = PatchDropout(patch_dropout) if patch_dropout > 0. else nn.Identity()
|
388 |
+
|
389 |
+
self.grad_checkpointing = grad_checkpointing
|
390 |
+
|
391 |
+
|
392 |
+
def get_num_layers(self):
|
393 |
+
return len(self.blocks)
|
394 |
+
|
395 |
+
def lock(self, unlocked_groups=0, freeze_bn_stats=False):
|
396 |
+
assert unlocked_groups == 0, 'partial locking not currently supported for this model'
|
397 |
+
for param in self.parameters():
|
398 |
+
param.requires_grad = False
|
399 |
+
|
400 |
+
@torch.jit.ignore
|
401 |
+
def set_grad_checkpointing(self, enable=True):
|
402 |
+
self.grad_checkpointing = enable
|
403 |
+
|
404 |
+
@torch.jit.ignore
|
405 |
+
def no_weight_decay(self):
|
406 |
+
return {'pos_embed', 'cls_token'}
|
407 |
+
|
408 |
+
|
409 |
+
def forward_features(self, x):
|
410 |
+
x = self.patch_embed(x)
|
411 |
+
batch_size, seq_len, _ = x.size()
|
412 |
+
|
413 |
+
cls_tokens = self.cls_token.expand(batch_size, -1, -1) # stole cls_tokens impl from Phil Wang, thanks
|
414 |
+
x = torch.cat((cls_tokens, x), dim=1)
|
415 |
+
if self.pos_embed is not None:
|
416 |
+
x = x + self.pos_embed
|
417 |
+
x = self.pos_drop(x)
|
418 |
+
|
419 |
+
# a patch_dropout of 0. would mean it is disabled and this function would do nothing but return what was passed in
|
420 |
+
if os.getenv('RoPE') == '1':
|
421 |
+
if self.training and not isinstance(self.patch_dropout, nn.Identity):
|
422 |
+
x, patch_indices_keep = self.patch_dropout(x)
|
423 |
+
self.rope.forward = partial(self.rope.forward, patch_indices_keep=patch_indices_keep)
|
424 |
+
else:
|
425 |
+
self.rope.forward = partial(self.rope.forward, patch_indices_keep=None)
|
426 |
+
x = self.patch_dropout(x)
|
427 |
+
else:
|
428 |
+
x = self.patch_dropout(x)
|
429 |
+
|
430 |
+
rel_pos_bias = None
|
431 |
+
|
432 |
+
for blk in self.blocks:
|
433 |
+
if self.grad_checkpointing:
|
434 |
+
x = checkpoint(blk, x, (rel_pos_bias,))
|
435 |
+
else:
|
436 |
+
x = blk(x, rel_pos_bias=rel_pos_bias)
|
437 |
+
|
438 |
+
return x
|
439 |
+
|
440 |
+
def forward(self, x):
|
441 |
+
|
442 |
+
"""
|
443 |
+
:return:
|
444 |
+
forward_features function returns raw features of ViT,
|
445 |
+
forward with return_all_features returns normalized features of ViT
|
446 |
+
:param x:
|
447 |
+
:param return_all_features:
|
448 |
+
"""
|
449 |
+
|
450 |
+
features = self.forward_features(x) # [B, n_patch, C]
|
451 |
+
|
452 |
+
return features
|