update
Browse files
README.md
CHANGED
@@ -7,7 +7,7 @@ tags:
|
|
7 |
- transformers
|
8 |
license: mit
|
9 |
language:
|
10 |
-
-
|
11 |
---
|
12 |
|
13 |
|
@@ -27,15 +27,21 @@ language:
|
|
27 |
|
28 |
More details please refer to our Github: [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding).
|
29 |
|
|
|
|
|
30 |
[English](README.md) | [中文](https://github.com/FlagOpen/FlagEmbedding/blob/master/README_zh.md)
|
31 |
|
32 |
FlagEmbedding can map any text to a low-dimensional dense vector which can be used for tasks like retrieval, classification, clustering, or semantic search.
|
33 |
-
And it also can be used in vector
|
34 |
|
35 |
************* 🌟**Updates**🌟 *************
|
36 |
-
-
|
|
|
|
|
|
|
|
|
37 |
- 08/05/2023: Release base-scale and small-scale models, **best performance among the models of the same size 🤗**
|
38 |
-
- 08/02/2023: Release `bge-large-*`(short for BAAI General Embedding) Models, **rank 1st on MTEB and C-MTEB benchmark!**
|
39 |
- 08/01/2023: We release the [Chinese Massive Text Embedding Benchmark](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB) (**C-MTEB**), consisting of 31 test dataset.
|
40 |
|
41 |
|
@@ -43,21 +49,80 @@ And it also can be used in vector database for LLMs.
|
|
43 |
|
44 |
`bge` is short for `BAAI general embedding`.
|
45 |
|
46 |
-
| Model | Language | Description | query instruction for retrieval\* |
|
47 |
-
|:-------------------------------|:--------:| :--------:|
|
48 |
-
| [BAAI/bge-large
|
49 |
-
| [BAAI/bge-base
|
50 |
-
| [BAAI/bge-
|
51 |
-
| [BAAI/bge-
|
52 |
-
| [BAAI/bge-
|
53 |
-
| [BAAI/bge-
|
54 |
-
| [BAAI/bge-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
-
\*: If you need to search the **long** relevant passages to a **short** query (s2p retrieval task), you need to add the instruction to the query; in other cases, no instruction is needed, just use the original query directly. In all cases, **no instruction** need to be added to passages.
|
57 |
|
58 |
## Usage
|
59 |
|
60 |
-
|
|
|
|
|
61 |
[FlagEmbedding](#using-flagembedding), [Sentence-Transformers](#using-sentence-transformers), [Langchain](#using-langchain), or [Huggingface Transformers](#using-huggingface-transformers).
|
62 |
|
63 |
#### Using FlagEmbedding
|
@@ -68,14 +133,15 @@ If it doesn't work for you, you can see [FlagEmbedding](https://github.com/FlagO
|
|
68 |
|
69 |
```python
|
70 |
from FlagEmbedding import FlagModel
|
71 |
-
|
|
|
72 |
model = FlagModel('BAAI/bge-large-zh', query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:")
|
73 |
-
embeddings_1 = model.encode(
|
74 |
-
embeddings_2 = model.encode(
|
75 |
similarity = embeddings_1 @ embeddings_2.T
|
76 |
print(similarity)
|
77 |
|
78 |
-
# for s2p(short query to long passage) retrieval task,
|
79 |
# corpus in retrieval task can still use encode() or encode_corpus(), since they don't need instruction
|
80 |
queries = ['query_1', 'query_2']
|
81 |
passages = ["样例文档-1", "样例文档-2"]
|
@@ -83,24 +149,26 @@ q_embeddings = model.encode_queries(queries)
|
|
83 |
p_embeddings = model.encode(passages)
|
84 |
scores = q_embeddings @ p_embeddings.T
|
85 |
```
|
86 |
-
|
87 |
|
88 |
-
FlagModel will use all available GPUs when encoding
|
|
|
89 |
|
90 |
|
91 |
#### Using Sentence-Transformers
|
92 |
|
93 |
-
|
94 |
|
95 |
```
|
96 |
pip install -U sentence-transformers
|
97 |
```
|
98 |
```python
|
99 |
from sentence_transformers import SentenceTransformer
|
100 |
-
|
|
|
101 |
model = SentenceTransformer('BAAI/bge-large-zh')
|
102 |
-
embeddings_1 = model.encode(
|
103 |
-
embeddings_2 = model.encode(
|
104 |
similarity = embeddings_1 @ embeddings_2.T
|
105 |
print(similarity)
|
106 |
```
|
@@ -127,17 +195,19 @@ from langchain.embeddings import HuggingFaceBgeEmbeddings
|
|
127 |
model_name = "BAAI/bge-small-en"
|
128 |
model_kwargs = {'device': 'cuda'}
|
129 |
encode_kwargs = {'normalize_embeddings': True} # set True to compute cosine similarity
|
130 |
-
|
131 |
model_name=model_name,
|
132 |
model_kwargs=model_kwargs,
|
133 |
-
encode_kwargs=encode_kwargs
|
|
|
134 |
)
|
|
|
135 |
```
|
136 |
|
137 |
|
138 |
#### Using HuggingFace Transformers
|
139 |
|
140 |
-
With transformers package, you can use the model like this: First, you pass your input through the transformer model, then you select the last hidden state of first token (i.e., [CLS]) as the sentence embedding.
|
141 |
|
142 |
```python
|
143 |
from transformers import AutoTokenizer, AutoModel
|
@@ -148,6 +218,7 @@ sentences = ["样例数据-1", "样例数据-2"]
|
|
148 |
# Load model from HuggingFace Hub
|
149 |
tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-large-zh')
|
150 |
model = AutoModel.from_pretrained('BAAI/bge-large-zh')
|
|
|
151 |
|
152 |
# Tokenize sentences
|
153 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
@@ -164,21 +235,65 @@ sentence_embeddings = torch.nn.functional.normalize(sentence_embeddings, p=2, di
|
|
164 |
print("Sentence embeddings:", sentence_embeddings)
|
165 |
```
|
166 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
|
168 |
## Evaluation
|
|
|
169 |
`baai-general-embedding` models achieve **state-of-the-art performance on both MTEB and C-MTEB leaderboard!**
|
170 |
-
|
171 |
|
172 |
- **MTEB**:
|
173 |
|
174 |
| Model Name | Dimension | Sequence Length | Average (56) | Retrieval (15) |Clustering (11) | Pair Classification (3) | Reranking (4) | STS (10) | Summarization (1) | Classification (12) |
|
175 |
|:----:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|
|
176 |
-
| [
|
177 |
-
| [
|
|
|
|
|
|
|
178 |
| [gte-large](https://huggingface.co/thenlper/gte-large) | 1024 | 512 | 63.13 | 52.22 | 46.84 | 85.00 | 59.13 | 83.35 | 31.66 | 73.33 |
|
179 |
| [gte-base](https://huggingface.co/thenlper/gte-base) | 768 | 512 | 62.39 | 51.14 | 46.2 | 84.57 | 58.61 | 82.3 | 31.17 | 73.01 |
|
180 |
| [e5-large-v2](https://huggingface.co/intfloat/e5-large-v2) | 1024| 512 | 62.25 | 50.56 | 44.49 | 86.03 | 56.61 | 82.05 | 30.19 | 75.24 |
|
181 |
-
| [
|
182 |
| [instructor-xl](https://huggingface.co/hkunlp/instructor-xl) | 768 | 512 | 61.79 | 49.26 | 44.74 | 86.62 | 57.29 | 83.06 | 32.32 | 61.79 |
|
183 |
| [e5-base-v2](https://huggingface.co/intfloat/e5-base-v2) | 768 | 512 | 61.5 | 50.29 | 43.80 | 85.73 | 55.91 | 81.05 | 30.28 | 73.84 |
|
184 |
| [gte-small](https://huggingface.co/thenlper/gte-small) | 384 | 512 | 61.36 | 49.46 | 44.89 | 83.54 | 57.7 | 82.07 | 30.42 | 72.31 |
|
@@ -187,86 +302,80 @@ More details and evaluation tools see our [scripts](https://github.com/FlagOpen/
|
|
187 |
| [sentence-t5-xxl](https://huggingface.co/sentence-transformers/sentence-t5-xxl) | 768 | 512 | 59.51 | 42.24 | 43.72 | 85.06 | 56.42 | 82.63 | 30.08 | 73.42 |
|
188 |
| [all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) | 768 | 514 | 57.78 | 43.81 | 43.69 | 83.04 | 59.36 | 80.28 | 27.49 | 65.07 |
|
189 |
| [sgpt-bloom-7b1-msmarco](https://huggingface.co/bigscience/sgpt-bloom-7b1-msmarco) | 4096 | 2048 | 57.59 | 48.22 | 38.93 | 81.9 | 55.65 | 77.74 | 33.6 | 66.19 |
|
190 |
-
| [all-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2) | 384 | 512 | 56.53 | 42.69 | 41.81 | 82.41 | 58.44 | 79.8 | 27.9 | 63.21 |
|
191 |
-
| [all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) | 384 | 512 | 56.26 | 41.95 | 42.35 | 82.37 | 58.04 | 78.9 | 30.81 | 63.05 |
|
192 |
-
| [contriever-base-msmarco](https://huggingface.co/nthakur/contriever-base-msmarco) | 768 | 512 | 56.00 | 41.88 | 41.1 | 82.54 | 53.14 | 76.51 | 30.36 | 66.68 |
|
193 |
-
| [sentence-t5-base](https://huggingface.co/sentence-transformers/sentence-t5-base) | 768 | 512 | 55.27 | 33.63 | 40.21 | 85.18 | 53.09 | 81.14 | 31.39 | 69.81 |
|
194 |
|
195 |
|
196 |
|
197 |
- **C-MTEB**:
|
198 |
-
We create
|
199 |
Please refer to [C_MTEB](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/README.md) for a detailed introduction.
|
200 |
|
201 |
| Model | Embedding dimension | Avg | Retrieval | STS | PairClassification | Classification | Reranking | Clustering |
|
202 |
|:-------------------------------|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|
|
203 |
-
| [**bge-large-zh**](https://huggingface.co/BAAI/bge-large-zh) | 1024 |
|
204 |
-
| [
|
205 |
-
| [
|
206 |
-
| [
|
207 |
-
| [
|
208 |
-
| [
|
209 |
-
| [
|
210 |
-
| [
|
211 |
-
| [
|
212 |
-
| [
|
213 |
-
|
214 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
215 |
|
216 |
## Train
|
217 |
-
This section will introduce the way we used to train the general embedding.
|
218 |
-
The training scripts are in [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md),
|
219 |
-
and we provide some examples to do [pre-train](https://github.com/FlagOpen/FlagEmbedding/blob/master/examples/pretrain/README.md) and [fine-tune](https://github.com/FlagOpen/FlagEmbedding/blob/master/examples/finetune/README.md).
|
220 |
-
|
221 |
-
|
222 |
-
**1. RetroMAE Pre-train**
|
223 |
-
We pre-train the model following the method [retromae](https://github.com/staoxiao/RetroMAE),
|
224 |
-
which shows promising improvement in retrieval task ([paper](https://aclanthology.org/2022.emnlp-main.35.pdf)).
|
225 |
-
The pre-training was conducted on 24 A100(40G) GPUs with a batch size of 720.
|
226 |
-
In retromae, the mask ratio of encoder and decoder are 0.3, 0.5 respectively.
|
227 |
-
We used the AdamW optimizer and the learning rate is 2e-5.
|
228 |
|
229 |
-
|
230 |
-
- English:
|
231 |
-
- [Pile](https://pile.eleuther.ai/)
|
232 |
-
- [wikipedia](https://huggingface.co/datasets/wikipedia)
|
233 |
-
- [msmarco](https://huggingface.co/datasets/Tevatron/msmarco-passage-corpus)
|
234 |
-
- Chinese:
|
235 |
-
- [wudao](https://github.com/BAAI-WuDao/Data)
|
236 |
|
|
|
|
|
|
|
|
|
|
|
237 |
|
238 |
-
**2. Finetune**
|
239 |
-
We fine-tune the model using a contrastive objective.
|
240 |
-
The format of input data is a triple`(query, positive, negative)`.
|
241 |
-
Besides the negative in the triple, we also adopt in-batch negatives strategy.
|
242 |
-
We employ the cross-device negatives sharing method to share negatives among different GPUs,
|
243 |
-
which can dramatically **increase the number of negatives**.
|
244 |
|
245 |
-
We trained our model on 48 A100(40G) GPUs with a large batch size of 32,768 (so there are **65,535** negatives for each query in a batch).
|
246 |
-
We used the AdamW optimizer and the learning rate is 1e-5.
|
247 |
-
The temperature for contrastive loss is 0.01.
|
248 |
|
249 |
-
|
250 |
-
For English, the instruction is `Represent this sentence for searching relevant passages: `;
|
251 |
-
For Chinese, the instruction is `为这个句子生成表示以用于检索相关文章:`.
|
252 |
-
In the evaluation, the instruction should be added for queries in retrieval task, not be added for other tasks.
|
253 |
-
Noted that the instruction is not needed for passages.
|
254 |
|
255 |
-
|
256 |
-
|
|
|
|
|
|
|
|
|
257 |
|
258 |
-
**Training data**:
|
259 |
|
260 |
-
|
|
|
|
|
261 |
|
262 |
-
- For chinese, we collect 120M text pairs from [wudao](https://github.com/BAAI-WuDao/Data), [simclue](https://github.com/CLUEbenchmark/SimCLUE) and so on.
|
263 |
|
264 |
-
|
265 |
-
|
266 |
-
We will continually update the embedding models and training codes,
|
267 |
-
hoping to promote the development of the embedding model community.
|
268 |
|
269 |
|
270 |
|
271 |
-
## License
|
272 |
-
FlagEmbedding is licensed under [MIT License](https://github.com/FlagOpen/FlagEmbedding/blob/master/LICENSE). The released models can be used for commercial purposes free of charge.
|
|
|
7 |
- transformers
|
8 |
license: mit
|
9 |
language:
|
10 |
+
- en
|
11 |
---
|
12 |
|
13 |
|
|
|
27 |
|
28 |
More details please refer to our Github: [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding).
|
29 |
|
30 |
+
|
31 |
+
|
32 |
[English](README.md) | [中文](https://github.com/FlagOpen/FlagEmbedding/blob/master/README_zh.md)
|
33 |
|
34 |
FlagEmbedding can map any text to a low-dimensional dense vector which can be used for tasks like retrieval, classification, clustering, or semantic search.
|
35 |
+
And it also can be used in vector databases for LLMs.
|
36 |
|
37 |
************* 🌟**Updates**🌟 *************
|
38 |
+
- 09/12/2023: New Release:
|
39 |
+
- **New reranker model**: release a cross-encoder model bge-reranker-base, which is more powerful than embedding model. We recommend to use/fine-tune it to re-rank top-k documents returned by embedding models.
|
40 |
+
- **update embedding model**: release bge-*-v1.5 embedding model to alleviate the issue of the similarity distribution, and enhance its retrieval ability without instruction.
|
41 |
+
- 09/07/2023: Update [fine-tune code](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md): Add script to mine hard negatives and support adding instruction during fine-tuning.
|
42 |
+
- 08/09/2023: BGE Models are integrated into **Langchain**, you can use it like [this](#using-langchain); C-MTEB **leaderboard** is [available](https://huggingface.co/spaces/mteb/leaderboard).
|
43 |
- 08/05/2023: Release base-scale and small-scale models, **best performance among the models of the same size 🤗**
|
44 |
+
- 08/02/2023: Release `bge-large-*`(short for BAAI General Embedding) Models, **rank 1st on MTEB and C-MTEB benchmark!** :tada: :tada:
|
45 |
- 08/01/2023: We release the [Chinese Massive Text Embedding Benchmark](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB) (**C-MTEB**), consisting of 31 test dataset.
|
46 |
|
47 |
|
|
|
49 |
|
50 |
`bge` is short for `BAAI general embedding`.
|
51 |
|
52 |
+
| Model | Language | | Description | query instruction for retrieval\* |
|
53 |
+
|:-------------------------------|:--------:| :--------:| :--------:|:--------:|
|
54 |
+
| [BAAI/bge-reranker-large](https://huggingface.co/BAAI/bge-reranker-large) | Chinese and English | [Inference](#usage-for-reranker) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/reranker) | a cross-encoder model which is more accurate but less efficient \** | |
|
55 |
+
| [BAAI/bge-reranker-base](https://huggingface.co/BAAI/bge-reranker-base) | Chinese and English | [Inference](#usage-for-reranker) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/reranker) | a cross-encoder model which is more accurate but less efficient \** | |
|
56 |
+
| [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `Represent this sentence for searching relevant passages: ` |
|
57 |
+
| [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `Represent this sentence for searching relevant passages: ` |
|
58 |
+
| [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `Represent this sentence for searching relevant passages: ` |
|
59 |
+
| [BAAI/bge-large-zh-v1.5](https://huggingface.co/BAAI/bge-large-zh-v1.5) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `为这个句子生成表示以用于检索相关文章:` |
|
60 |
+
| [BAAI/bge-base-zh-v1.5](https://huggingface.co/BAAI/bge-base-zh-v1.5) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `为这个句子生成表示以用于检索相关文章:` |
|
61 |
+
| [BAAI/bge-small-zh-v1.5](https://huggingface.co/BAAI/bge-small-zh-v1.5) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `为这个句子生成表示以用于检索相关文章:` |
|
62 |
+
| [BAAI/bge-large-en](https://huggingface.co/BAAI/bge-large-en) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | :trophy: rank **1st** in [MTEB](https://huggingface.co/spaces/mteb/leaderboard) leaderboard | `Represent this sentence for searching relevant passages: ` |
|
63 |
+
| [BAAI/bge-base-en](https://huggingface.co/BAAI/bge-base-en) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a base-scale model but with similar ability to `bge-large-en` | `Represent this sentence for searching relevant passages: ` |
|
64 |
+
| [BAAI/bge-small-en](https://huggingface.co/BAAI/bge-small-en) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) |a small-scale model but with competitive performance | `Represent this sentence for searching relevant passages: ` |
|
65 |
+
| [BAAI/bge-large-zh](https://huggingface.co/BAAI/bge-large-zh) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | :trophy: rank **1st** in [C-MTEB](https://github.com/FlagOpen/FlagEmbedding/tree/master/C_MTEB) benchmark | `为这个句子生成表示以用于检索相关文章:` |
|
66 |
+
| [BAAI/bge-base-zh](https://huggingface.co/BAAI/bge-base-zh) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a base-scale model but with similar ability to `bge-large-zh` | `为这个句子生成表示以用于检索相关文章:` |
|
67 |
+
| [BAAI/bge-small-zh](https://huggingface.co/BAAI/bge-small-zh) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a small-scale model but with competitive performance | `为这个句子生成表示以用于检索相关文章:` |
|
68 |
+
|
69 |
+
|
70 |
+
\*: If you need to search the relevant passages to a query, we suggest to add the instruction to the query; in other cases, no instruction is needed, just use the original query directly. In all cases, **no instruction** needs to be added to passages.
|
71 |
+
|
72 |
+
\**: To balance the accuracy and time cost, cross-encoder is widely used to re-rank top-k documents retrieved by other simple models.
|
73 |
+
For examples, use bge embedding model to retrieve top 100 relevant documents, and then use bge reranker to re-rank the top 100 document to get the final top-3 results.
|
74 |
+
|
75 |
+
|
76 |
+
## Frequently asked questions
|
77 |
+
|
78 |
+
<details>
|
79 |
+
<summary>1. How to fine-tune bge embedding model?</summary>
|
80 |
+
|
81 |
+
<!-- ### How to fine-tune bge embedding model? -->
|
82 |
+
Following this [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) to prepare data and fine-tune your model.
|
83 |
+
Some suggestions:
|
84 |
+
- Mine hard negatives following this [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune#data-format), which can improve the retrieval performance.
|
85 |
+
- If you pre-train bge on your data, the pre-trained model cannot be directly used to calculate similarity, and it must be fine-tuned with contrastive learning before computing similarity.
|
86 |
+
- If the accuracy of the fine-tuned model is still not high, it is recommended to use/fine-tune the cross-encoder model (bge-reranker) to re-rank top-k results. Hard negatives also are needed to fine-tune reranker.
|
87 |
+
|
88 |
+
|
89 |
+
</details>
|
90 |
+
|
91 |
+
<details>
|
92 |
+
<summary>2. The similarity score between two dissimilar sentences is higher than 0.5</summary>
|
93 |
+
|
94 |
+
<!-- ### The similarity score between two dissimilar sentences is higher than 0.5 -->
|
95 |
+
**Suggest to use bge v1.5, which alleviates the issue of the similarity distribution.**
|
96 |
+
|
97 |
+
Since we finetune the models by contrastive learning with a temperature of 0.01,
|
98 |
+
the similarity distribution of the current BGE model is about in the interval \[0.6, 1\].
|
99 |
+
So a similarity score greater than 0.5 does not indicate that the two sentences are similar.
|
100 |
+
|
101 |
+
For downstream tasks, such as passage retrieval or semantic similarity,
|
102 |
+
**what matters is the relative order of the scores, not the absolute value.**
|
103 |
+
If you need to filter similar sentences based on a similarity threshold,
|
104 |
+
please select an appropriate similarity threshold based on the similarity distribution on your data (such as 0.8, 0.85, or even 0.9).
|
105 |
+
|
106 |
+
</details>
|
107 |
+
|
108 |
+
<details>
|
109 |
+
<summary>3. When does the query instruction need to be used</summary>
|
110 |
+
|
111 |
+
<!-- ### When does the query instruction need to be used -->
|
112 |
+
|
113 |
+
For a retrieval task that uses short queries to find long related documents,
|
114 |
+
it is recommended to add instructions for these short queries.
|
115 |
+
**The best method to decide whether to add instructions for queries is choosing the setting that achieves better performance on your task.**
|
116 |
+
In all cases, the documents/passages do not need to add the instruction.
|
117 |
+
|
118 |
+
</details>
|
119 |
|
|
|
120 |
|
121 |
## Usage
|
122 |
|
123 |
+
### Usage for Embedding Model
|
124 |
+
|
125 |
+
Here are some examples for using `bge` models with
|
126 |
[FlagEmbedding](#using-flagembedding), [Sentence-Transformers](#using-sentence-transformers), [Langchain](#using-langchain), or [Huggingface Transformers](#using-huggingface-transformers).
|
127 |
|
128 |
#### Using FlagEmbedding
|
|
|
133 |
|
134 |
```python
|
135 |
from FlagEmbedding import FlagModel
|
136 |
+
sentences_1 = ["样例数据-1", "样例数据-2"]
|
137 |
+
sentences_2 = ["样例数据-3", "样例数据-4"]
|
138 |
model = FlagModel('BAAI/bge-large-zh', query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:")
|
139 |
+
embeddings_1 = model.encode(sentences_1)
|
140 |
+
embeddings_2 = model.encode(sentences_2)
|
141 |
similarity = embeddings_1 @ embeddings_2.T
|
142 |
print(similarity)
|
143 |
|
144 |
+
# for s2p(short query to long passage) retrieval task, suggest to use encode_queries() which will automatically add the instruction to each query
|
145 |
# corpus in retrieval task can still use encode() or encode_corpus(), since they don't need instruction
|
146 |
queries = ['query_1', 'query_2']
|
147 |
passages = ["样例文档-1", "样例文档-2"]
|
|
|
149 |
p_embeddings = model.encode(passages)
|
150 |
scores = q_embeddings @ p_embeddings.T
|
151 |
```
|
152 |
+
For the value of the argument `query_instruction_for_retrieval`, see [Model List](https://github.com/FlagOpen/FlagEmbedding/tree/master#model-list).
|
153 |
|
154 |
+
By default, FlagModel will use all available GPUs when encoding. Please set `os.environ["CUDA_VISIBLE_DEVICES"]` to select specific GPUs.
|
155 |
+
You also can set `os.environ["CUDA_VISIBLE_DEVICES"]=""` to make all GPUs unavailable.
|
156 |
|
157 |
|
158 |
#### Using Sentence-Transformers
|
159 |
|
160 |
+
You can also use the `bge` models with [sentence-transformers](https://www.SBERT.net):
|
161 |
|
162 |
```
|
163 |
pip install -U sentence-transformers
|
164 |
```
|
165 |
```python
|
166 |
from sentence_transformers import SentenceTransformer
|
167 |
+
sentences_1 = ["样例数据-1", "样例数据-2"]
|
168 |
+
sentences_2 = ["样例数据-3", "样例数据-4"]
|
169 |
model = SentenceTransformer('BAAI/bge-large-zh')
|
170 |
+
embeddings_1 = model.encode(sentences_1, normalize_embeddings=True)
|
171 |
+
embeddings_2 = model.encode(sentences_2, normalize_embeddings=True)
|
172 |
similarity = embeddings_1 @ embeddings_2.T
|
173 |
print(similarity)
|
174 |
```
|
|
|
195 |
model_name = "BAAI/bge-small-en"
|
196 |
model_kwargs = {'device': 'cuda'}
|
197 |
encode_kwargs = {'normalize_embeddings': True} # set True to compute cosine similarity
|
198 |
+
model = HuggingFaceBgeEmbeddings(
|
199 |
model_name=model_name,
|
200 |
model_kwargs=model_kwargs,
|
201 |
+
encode_kwargs=encode_kwargs,
|
202 |
+
query_instruction="为这个句子生成表示以用于检索相关文章:"
|
203 |
)
|
204 |
+
model.query_instruction = "为这个句子生成表示以用于检索相关文章:"
|
205 |
```
|
206 |
|
207 |
|
208 |
#### Using HuggingFace Transformers
|
209 |
|
210 |
+
With the transformers package, you can use the model like this: First, you pass your input through the transformer model, then you select the last hidden state of the first token (i.e., [CLS]) as the sentence embedding.
|
211 |
|
212 |
```python
|
213 |
from transformers import AutoTokenizer, AutoModel
|
|
|
218 |
# Load model from HuggingFace Hub
|
219 |
tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-large-zh')
|
220 |
model = AutoModel.from_pretrained('BAAI/bge-large-zh')
|
221 |
+
model.eval()
|
222 |
|
223 |
# Tokenize sentences
|
224 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
|
|
235 |
print("Sentence embeddings:", sentence_embeddings)
|
236 |
```
|
237 |
|
238 |
+
### Usage for Reranker
|
239 |
+
|
240 |
+
You can get a relevance score by inputting query and passage to the reranker.
|
241 |
+
The reranker is optimized based cross-entropy loss, so the relevance score is not bounded to a specific range.
|
242 |
+
|
243 |
+
|
244 |
+
#### Using FlagEmbedding
|
245 |
+
```
|
246 |
+
pip install -U FlagEmbedding
|
247 |
+
```
|
248 |
+
|
249 |
+
Get relevance score:
|
250 |
+
```python
|
251 |
+
from FlagEmbedding import FlagReranker
|
252 |
+
reranker = FlagReranker('BAAI/bge-reranker-base', use_fp16=True) #use fp16 can speed up computing
|
253 |
+
|
254 |
+
score = reranker.compute_score(['query', 'passage'])
|
255 |
+
print(score)
|
256 |
+
|
257 |
+
scores = reranker.compute_score([['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']])
|
258 |
+
print(scores)
|
259 |
+
```
|
260 |
+
|
261 |
+
|
262 |
+
#### Using Huggingface transformers
|
263 |
+
|
264 |
+
```python
|
265 |
+
import torch
|
266 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer, BatchEncoding, PreTrainedTokenizerFast
|
267 |
+
|
268 |
+
tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-reranker-base')
|
269 |
+
model = AutoModelForSequenceClassification.from_pretrained('BAAI/bge-reranker-base')
|
270 |
+
model.eval()
|
271 |
+
|
272 |
+
pairs = [['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']]
|
273 |
+
with torch.no_grad():
|
274 |
+
inputs = tokenizer(pairs, padding=True, truncation=True, return_tensors='pt', max_length=512)
|
275 |
+
scores = model(**inputs, return_dict=True).logits.view(-1, ).float()
|
276 |
+
print(scores)
|
277 |
+
```
|
278 |
|
279 |
## Evaluation
|
280 |
+
|
281 |
`baai-general-embedding` models achieve **state-of-the-art performance on both MTEB and C-MTEB leaderboard!**
|
282 |
+
For more details and evaluation tools see our [scripts](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/README.md).
|
283 |
|
284 |
- **MTEB**:
|
285 |
|
286 |
| Model Name | Dimension | Sequence Length | Average (56) | Retrieval (15) |Clustering (11) | Pair Classification (3) | Reranking (4) | STS (10) | Summarization (1) | Classification (12) |
|
287 |
|:----:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|
|
288 |
+
| [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) | 1024 | 512 | **64.23** | **54.29** | 46.08 | 87.12 | 60.03 | 83.11 | 31.61 | 75.97 |
|
289 |
+
| [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) | 768 | 512 | 63.55 | 53.25 | 45.77 | 86.55 | 58.86 | 82.4 | 31.07 | 75.53 |
|
290 |
+
| [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) | 384 | 512 | 62.17 |51.68 | 43.82 | 84.92 | 58.36 | 81.59 | 30.12 | 74.14 |
|
291 |
+
| [bge-large-en](https://huggingface.co/BAAI/bge-large-en) | 1024 | 512 | 63.98 | 53.9 | 46.98 | 85.8 | 59.48 | 81.56 | 32.06 | 76.21 |
|
292 |
+
| [bge-base-en](https://huggingface.co/BAAI/bge-base-en) | 768 | 512 | 63.36 | 53.0 | 46.32 | 85.86 | 58.7 | 81.84 | 29.27 | 75.27 |
|
293 |
| [gte-large](https://huggingface.co/thenlper/gte-large) | 1024 | 512 | 63.13 | 52.22 | 46.84 | 85.00 | 59.13 | 83.35 | 31.66 | 73.33 |
|
294 |
| [gte-base](https://huggingface.co/thenlper/gte-base) | 768 | 512 | 62.39 | 51.14 | 46.2 | 84.57 | 58.61 | 82.3 | 31.17 | 73.01 |
|
295 |
| [e5-large-v2](https://huggingface.co/intfloat/e5-large-v2) | 1024| 512 | 62.25 | 50.56 | 44.49 | 86.03 | 56.61 | 82.05 | 30.19 | 75.24 |
|
296 |
+
| [bge-small-en](https://huggingface.co/BAAI/bge-small-en) | 384 | 512 | 62.11 | 51.82 | 44.31 | 83.78 | 57.97 | 80.72 | 30.53 | 74.37 |
|
297 |
| [instructor-xl](https://huggingface.co/hkunlp/instructor-xl) | 768 | 512 | 61.79 | 49.26 | 44.74 | 86.62 | 57.29 | 83.06 | 32.32 | 61.79 |
|
298 |
| [e5-base-v2](https://huggingface.co/intfloat/e5-base-v2) | 768 | 512 | 61.5 | 50.29 | 43.80 | 85.73 | 55.91 | 81.05 | 30.28 | 73.84 |
|
299 |
| [gte-small](https://huggingface.co/thenlper/gte-small) | 384 | 512 | 61.36 | 49.46 | 44.89 | 83.54 | 57.7 | 82.07 | 30.42 | 72.31 |
|
|
|
302 |
| [sentence-t5-xxl](https://huggingface.co/sentence-transformers/sentence-t5-xxl) | 768 | 512 | 59.51 | 42.24 | 43.72 | 85.06 | 56.42 | 82.63 | 30.08 | 73.42 |
|
303 |
| [all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) | 768 | 514 | 57.78 | 43.81 | 43.69 | 83.04 | 59.36 | 80.28 | 27.49 | 65.07 |
|
304 |
| [sgpt-bloom-7b1-msmarco](https://huggingface.co/bigscience/sgpt-bloom-7b1-msmarco) | 4096 | 2048 | 57.59 | 48.22 | 38.93 | 81.9 | 55.65 | 77.74 | 33.6 | 66.19 |
|
|
|
|
|
|
|
|
|
305 |
|
306 |
|
307 |
|
308 |
- **C-MTEB**:
|
309 |
+
We create the benchmark C-MTEB for Chinese text embedding which consists of 31 datasets from 6 tasks.
|
310 |
Please refer to [C_MTEB](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/README.md) for a detailed introduction.
|
311 |
|
312 |
| Model | Embedding dimension | Avg | Retrieval | STS | PairClassification | Classification | Reranking | Clustering |
|
313 |
|:-------------------------------|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|
|
314 |
+
| [**BAAI/bge-large-zh-v1.5**](https://huggingface.co/BAAI/bge-large-zh-v1.5) | 1024 | **64.53** | 70.46 | 56.25 | 81.6 | 69.13 | 65.84 | 48.99 |
|
315 |
+
| [BAAI/bge-base-zh-v1.5](https://huggingface.co/BAAI/bge-base-zh-v1.5) | 768 | 63.13 | 69.49 | 53.72 | 79.75 | 68.07 | 65.39 | 47.53 |
|
316 |
+
| [BAAI/bge-small-zh-v1.5](https://huggingface.co/BAAI/bge-small-zh-v1.5) | 512 | 57.82 | 61.77 | 49.11 | 70.41 | 63.96 | 60.92 | 44.18 |
|
317 |
+
| [BAAI/bge-large-zh](https://huggingface.co/BAAI/bge-large-zh) | 1024 | 64.20 | 71.53 | 54.98 | 78.94 | 68.32 | 65.11 | 48.39 |
|
318 |
+
| [bge-large-zh-noinstruct](https://huggingface.co/BAAI/bge-large-zh-noinstruct) | 1024 | 63.53 | 70.55 | 53 | 76.77 | 68.58 | 64.91 | 50.01 |
|
319 |
+
| [BAAI/bge-base-zh](https://huggingface.co/BAAI/bge-base-zh) | 768 | 62.96 | 69.53 | 54.12 | 77.5 | 67.07 | 64.91 | 47.63 |
|
320 |
+
| [multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) | 1024 | 58.79 | 63.66 | 48.44 | 69.89 | 67.34 | 56.00 | 48.23 |
|
321 |
+
| [BAAI/bge-small-zh](https://huggingface.co/BAAI/bge-small-zh) | 512 | 58.27 | 63.07 | 49.45 | 70.35 | 63.64 | 61.48 | 45.09 |
|
322 |
+
| [m3e-base](https://huggingface.co/moka-ai/m3e-base) | 768 | 57.10 | 56.91 | 50.47 | 63.99 | 67.52 | 59.34 | 47.68 |
|
323 |
+
| [m3e-large](https://huggingface.co/moka-ai/m3e-large) | 1024 | 57.05 | 54.75 | 50.42 | 64.3 | 68.2 | 59.66 | 48.88 |
|
324 |
+
| [multilingual-e5-base](https://huggingface.co/intfloat/multilingual-e5-base) | 768 | 55.48 | 61.63 | 46.49 | 67.07 | 65.35 | 54.35 | 40.68 |
|
325 |
+
| [multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small) | 384 | 55.38 | 59.95 | 45.27 | 66.45 | 65.85 | 53.86 | 45.26 |
|
326 |
+
| [text-embedding-ada-002(OpenAI)](https://platform.openai.com/docs/guides/embeddings/what-are-embeddings) | 1536 | 53.02 | 52.0 | 43.35 | 69.56 | 64.31 | 54.28 | 45.68 |
|
327 |
+
| [luotuo](https://huggingface.co/silk-road/luotuo-bert-medium) | 1024 | 49.37 | 44.4 | 42.78 | 66.62 | 61 | 49.25 | 44.39 |
|
328 |
+
| [text2vec-base](https://huggingface.co/shibing624/text2vec-base-chinese) | 768 | 47.63 | 38.79 | 43.41 | 67.41 | 62.19 | 49.45 | 37.66 |
|
329 |
+
| [text2vec-large](https://huggingface.co/GanymedeNil/text2vec-large-chinese) | 1024 | 47.36 | 41.94 | 44.97 | 70.86 | 60.66 | 49.16 | 30.02 |
|
330 |
+
|
331 |
+
|
332 |
+
- **Reranking**:
|
333 |
+
See [C_MTEB](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/) for evaluation script.
|
334 |
+
|
335 |
+
| Model | T2Reranking | T2RerankingZh2En\* | T2RerankingEn2Zh\* | MmarcoReranking | CMedQAv1 | CMedQAv2 | Avg |
|
336 |
+
|:-------------------------------|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|
|
337 |
+
| text2vec-base-multilingual | 64.66 | 62.94 | 62.51 | 14.37 | 48.46 | 48.6 | 50.26 |
|
338 |
+
| multilingual-e5-small | 65.62 | 60.94 | 56.41 | 29.91 | 67.26 | 66.54 | 57.78 |
|
339 |
+
| multilingual-e5-large | 64.55 | 61.61 | 54.28 | 28.6 | 67.42 | 67.92 | 57.4 |
|
340 |
+
| multilingual-e5-base | 64.21 | 62.13 | 54.68 | 29.5 | 66.23 | 66.98 | 57.29 |
|
341 |
+
| m3e-base | 66.03 | 62.74 | 56.07 | 17.51 | 77.05 | 76.76 | 59.36 |
|
342 |
+
| m3e-large | 66.13 | 62.72 | 56.1 | 16.46 | 77.76 | 78.27 | 59.57 |
|
343 |
+
| bge-base-zh-v1.5 | 66.49 | 63.25 | 57.02 | 29.74 | 80.47 | 84.88 | 63.64 |
|
344 |
+
| bge-large-zh-v1.5 | 65.74 | 63.39 | 57.03 | 28.74 | 83.45 | 85.44 | 63.97 |
|
345 |
+
| [BAAI/bge-reranker-base](https://huggingface.co/BAAI/bge-reranker-base) | 67.28 | 63.95 | 60.45 | 35.46 | 81.26 | 84.1 | 65.42 |
|
346 |
+
| [BAAI/bge-reranker-large](https://huggingface.co/BAAI/bge-reranker-large) | 67.6 | 64.03 | 61.44 | 37.16 | 82.15 | 84.18 | 66.09 |
|
347 |
+
|
348 |
+
\* : T2RerankingZh2En and T2RerankingEn2Zh are cross-language retrieval task
|
349 |
|
350 |
## Train
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
351 |
|
352 |
+
### BAAI Embedding
|
|
|
|
|
|
|
|
|
|
|
|
|
353 |
|
354 |
+
We pre-train the models using retromae and train them on large-scale pairs data using contrastive learning.
|
355 |
+
**You can fine-tune the embedding model on your data following our [examples](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune).**
|
356 |
+
We also provide a [pre-train example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/pretrain).
|
357 |
+
Note that the goal of pre-training is to reconstruct the text, and the pre-trained model cannot be used for similarity calculation directly, it needs to be fine-tuned.
|
358 |
+
More training details for bge see [baai_general_embedding](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md).
|
359 |
|
|
|
|
|
|
|
|
|
|
|
|
|
360 |
|
|
|
|
|
|
|
361 |
|
362 |
+
### BGE Reranker
|
|
|
|
|
|
|
|
|
363 |
|
364 |
+
Cross-encoder will perform full-attention over the input pair,
|
365 |
+
which is more accurate than embedding model (i.e., bi-encoder) but more time-consuming than embedding model.
|
366 |
+
Therefore, it can be used to re-rank the top-k documents returned by embedding model.
|
367 |
+
We train the cross-encoder on a multilingual pair data,
|
368 |
+
The data format is the same as embedding model, so you can fine-tune it easily following our example.
|
369 |
+
More details pelease refer to [./FlagEmbedding/reranker/README.md](./FlagEmbedding/reranker/README.md)
|
370 |
|
|
|
371 |
|
372 |
+
## Contact
|
373 |
+
If you have any question or suggestion related to this project, feel free to open an issue or pull request.
|
374 |
+
You also can email Shitao Xiao(stxiao@baai.ac.cn) and Zheng Liu(liuzheng@baai.ac.cn).
|
375 |
|
|
|
376 |
|
377 |
+
## License
|
378 |
+
FlagEmbedding is licensed under the [MIT License](https://github.com/FlagOpen/FlagEmbedding/blob/master/LICENSE). The released models can be used for commercial purposes free of charge.
|
|
|
|
|
379 |
|
380 |
|
381 |
|
|
|
|