BBBBirdIsTheWord commited on
Commit
4cc9398
1 Parent(s): 9ba4bf8

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaPickAndPlace-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaPickAndPlace-v3
16
+ type: PandaPickAndPlace-v3
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -45.70 +/- 12.90
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaPickAndPlace-v3**
25
+ This is a trained model of a **A2C** agent playing **PandaPickAndPlace-v3**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaPickAndPlace-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fc704008ee7c5b6ce6d4084d71734f2677ac557538651ddb067e8e2e097a974c
3
+ size 122850
a2c-PandaPickAndPlace-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.1.0
a2c-PandaPickAndPlace-v3/data ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7ecc4d3beb90>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7ecc4d3ba900>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "num_timesteps": 1000000,
23
+ "_total_timesteps": 1000000,
24
+ "_num_timesteps_at_start": 0,
25
+ "seed": null,
26
+ "action_noise": null,
27
+ "start_time": 1695592224272895476,
28
+ "learning_rate": 0.00096,
29
+ "tensorboard_log": null,
30
+ "_last_obs": {
31
+ ":type:": "<class 'collections.OrderedDict'>",
32
+ ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAcl6CPeJqjr/of/E9tYOev9SalD8rd/E9IHITP9fTDr//gPE9f+0rP3cCg78rd/E9lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAzDSyPxOdzj8YIC+/jjB5Pq09yT/Vseo/3/pvv0eNWD/IKYq/5deLPzs0Tb9WW6c/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAAAKQqq/tFGjv4Pcir64hL0/7fImP04ohT8wM8c/cl6CPeJqjr/of/E9YR/su1I/tbzQW7C86vIWPYf5pzy5fWM9vIMhvK7Co7xkUnY7YvqHP+wZGD/+wlm/kKAnv/SUZ71pJtK/Q4+EP7WDnr/UmpQ/K3fxPVEW4buYebW8h/67vKFFFT3Q3qU8uX1jPc6DIby2wqO8CshaOzUoxr/1I2q/kocGv++AyL/MCRLATDuCP61XNT4gchM/19MOv/+A8T1QoOe7erK1vKMVtbyCABU9v3mpPI2sYj0YA0m8opSvvFEcZTvNeGS/XMXPv3jdgL7gmcu/YRpDvxVAG7/U6ek/f+0rP3cCg78rd/E9UBbhu5h5tbz55Ly8o0UVPdPepTy5fWM9zoMhvLbCo7yHx1o7lGgOSwRLE4aUaBJ0lFKUdS4=",
33
+ "achieved_goal": "[[ 0.0636567 -1.1126368 0.11791974]\n [-1.2383944 1.160975 0.11790308]\n [ 0.57596016 -0.5579199 0.11792182]\n [ 0.67159265 -1.0235127 0.11790308]]",
34
+ "desired_goal": "[[ 1.3922362 1.6141685 -0.68408346]\n [ 0.24334928 1.5721947 1.833552 ]\n [-0.93742174 0.8459057 -1.0794001 ]\n [ 1.0925261 -0.8015782 1.3074749 ]]",
35
+ "observation": "[[-1.3301404 -1.2759309 -0.27121362 1.4806128 0.65214425 1.0402925\n 1.5562496 0.0636567 -1.1126368 0.11791974 -0.00720589 -0.02212492\n -0.02152815 0.03685275 0.02050473 0.05553982 -0.00985807 -0.01999029\n 0.00375857]\n [ 1.0623286 0.59414554 -0.8506316 -0.65479374 -0.05653854 -1.6417972\n 1.035622 -1.2383944 1.160975 0.11790308 -0.00686912 -0.02215271\n -0.02294852 0.03644336 0.02024785 0.05553982 -0.00985808 -0.01999031\n 0.00333834]\n [-1.548102 -0.91461116 -0.52550614 -1.5664347 -2.281848 1.0174346\n 0.17709227 0.57596016 -0.5579199 0.11792182 -0.00706867 -0.02217983\n -0.02210504 0.03637744 0.02068794 0.05534034 -0.0122688 -0.02143318\n 0.00349595]\n [-0.8924683 -1.6232104 -0.25168967 -1.5906334 -0.76212126 -0.60644656\n 1.8274484 0.67159265 -1.0235127 0.11790308 -0.00686911 -0.02215271\n -0.0230584 0.03644336 0.02024785 0.05553982 -0.00985808 -0.01999031\n 0.00333831]]"
36
+ },
37
+ "_last_episode_starts": {
38
+ ":type:": "<class 'numpy.ndarray'>",
39
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
40
+ },
41
+ "_last_original_obs": {
42
+ ":type:": "<class 'collections.OrderedDict'>",
43
+ ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAbQ6sPSXurzsK16M8AAyAPQ9VDL0K16M8PRFxvS+Ujz0K16M8HGSSPYr1Qj0K16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAp/mnPQ++prza+Yc9je6yPSFWFz7WGFU+yO1HPVwKe7zMN20998/7PdZbQruFe1E+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAbQ6sPSXurzsK16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAAAMgD0PVQy9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAAA9EXG9L5SPPQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAHGSSPYr1Qj0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwRLE4aUaBJ0lFKUdS4=",
44
+ "achieved_goal": "[[ 0.08401189 0.00536897 0.02 ]\n [ 0.06252289 -0.03426081 0.02 ]\n [-0.05885433 0.07010686 0.02 ]\n [ 0.07148001 0.04759745 0.02 ]]",
45
+ "desired_goal": "[[ 0.08201914 -0.0203543 0.06639452]\n [ 0.08736906 0.1477895 0.20810255]\n [ 0.04881075 -0.01532229 0.05791454]\n [ 0.12295526 -0.00296568 0.20457275]]",
46
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 8.4011890e-02\n 5.3689652e-03 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 6.2522888e-02\n -3.4260806e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -5.8854330e-02\n 7.0106857e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 7.1480006e-02\n 4.7597446e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]]"
47
+ },
48
+ "_episode_num": 0,
49
+ "use_sde": false,
50
+ "sde_sample_freq": -1,
51
+ "_current_progress_remaining": 0.0,
52
+ "_stats_window_size": 100,
53
+ "ep_info_buffer": {
54
+ ":type:": "<class 'collections.deque'>",
55
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEkAAAAAAACMAWyUSzKMAXSUR0Cl/hufEn9fdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cl/obwazeGdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cl/nhRqGlAdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cl/tfMwDeTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cl/ygCGN70dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cl/5TLwF1TdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cl/4YeLehxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cl/+XiR4hVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmADcYqG1ydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmAKUA1ejVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmAJPHcUM5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmAPRujynUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmAUXaSLZSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmAa9K28ZldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmAaVc+qzadX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmAgWPDHfedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmAlX/Pw/gdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmAsESmIj4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmArZ5iVjadX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmAxh5Pdl/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmA2pBX0XhdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmA9VBUrCndX2UKGgGR8AwAAAAAAAAaAdLEWgIR0CmA8wZGax5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmA8q814xDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmBCniFTNudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmBOfD+BH1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmBNwzLwF1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmBOOz6ab4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmBUcX3xnWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmBgD4YaYNdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmBfbrcCYDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmBfVQqI8AdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmBlXTEzfrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmBxE3bVSXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmBwVpsXSCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmBwb+98JEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmB2cinpB5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmCCJ3gUDddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmCBXaSLZSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmCBmNBF/hdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmCHrpRoAXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmCTdKNAC5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmCSrTQVsUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmCS8kleF+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmCY9GZuyedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmCklAu7HydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmCjp22XsxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmCjTBqKxcdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmCpWgFotddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmC08gQpWndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmCz+49X9zdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CmC0WBJ7LMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmCzpgb6xgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmC5jzyz5XdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmDFJHRTjvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmDEch1TzedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmDEIwmE5AdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CmDEfn4fwJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmDKMFEAo5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmDV15a/yodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmDVaUaAFxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmDVHSfDk3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmDa2LP2PDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmDmxlpXZHdX2UKGgGR8AuAAAAAAAAaAdLEGgIR0CmDa/IS13MdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmDmtr9EThdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmDsXKB/ZvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmD4EhJRO2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmDsFGwzLwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmD3jx0+1SdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmD83nQpnZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmEIjEehf0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmD8hy0a60dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmEH9S2phndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmENe40/GEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmEZP1UVBVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmENQ5eZ5SdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmEYz1bqyGdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmEe7zK9wndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmEqsEq2BrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmEet5+pfhdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmEqUb961LdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmEwBXCCSSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmE7sV+I/JdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmEvvPLPlddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmE7SeyzHCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmFCZLytmudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmFOb212JSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmFCe6qbSadX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmFN51/2CedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmFTWcjJMhdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmFfJx3mmtdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmFTMvh60IdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmFepaJQ+EdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmFkMl9jPOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmFv3SKFZgdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CmFwMuWa+fdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmFj3C0ngHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmFviSq2jPdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CmFv2pqASWdWUu"
56
+ },
57
+ "ep_success_buffer": {
58
+ ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
60
+ },
61
+ "_n_updates": 50000,
62
+ "n_steps": 5,
63
+ "gamma": 0.99,
64
+ "gae_lambda": 0.9,
65
+ "ent_coef": 0.0,
66
+ "vf_coef": 0.4,
67
+ "max_grad_norm": 0.5,
68
+ "normalize_advantage": false,
69
+ "observation_space": {
70
+ ":type:": "<class 'gymnasium.spaces.dict.Dict'>",
71
+ ":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=",
72
+ "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])",
73
+ "_shape": null,
74
+ "dtype": null,
75
+ "_np_random": null
76
+ },
77
+ "action_space": {
78
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
79
+ ":serialized:": "gAWVpwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=",
80
+ "dtype": "float32",
81
+ "bounded_below": "[ True True True True]",
82
+ "bounded_above": "[ True True True True]",
83
+ "_shape": [
84
+ 4
85
+ ],
86
+ "low": "[-1. -1. -1. -1.]",
87
+ "high": "[1. 1. 1. 1.]",
88
+ "low_repr": "-1.0",
89
+ "high_repr": "1.0",
90
+ "_np_random": null
91
+ },
92
+ "n_envs": 4,
93
+ "lr_schedule": {
94
+ ":type:": "<class 'function'>",
95
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
96
+ }
97
+ }
a2c-PandaPickAndPlace-v3/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:031782933afb5c9a155783b3834f2a263fcf31a496c8f30568f6d19a918766c8
3
+ size 51646
a2c-PandaPickAndPlace-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:36ed30a82005a693692ea63d0d75bcf9cfc97d1cb330f7841bd85238554ef638
3
+ size 52926
a2c-PandaPickAndPlace-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaPickAndPlace-v3/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.1.0
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.29.1
9
+ - OpenAI Gym: 0.25.2
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7ecc4d3beb90>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ecc4d3ba900>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1695592224272895476, "learning_rate": 0.00096, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAcl6CPeJqjr/of/E9tYOev9SalD8rd/E9IHITP9fTDr//gPE9f+0rP3cCg78rd/E9lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAzDSyPxOdzj8YIC+/jjB5Pq09yT/Vseo/3/pvv0eNWD/IKYq/5deLPzs0Tb9WW6c/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAAAKQqq/tFGjv4Pcir64hL0/7fImP04ohT8wM8c/cl6CPeJqjr/of/E9YR/su1I/tbzQW7C86vIWPYf5pzy5fWM9vIMhvK7Co7xkUnY7YvqHP+wZGD/+wlm/kKAnv/SUZ71pJtK/Q4+EP7WDnr/UmpQ/K3fxPVEW4buYebW8h/67vKFFFT3Q3qU8uX1jPc6DIby2wqO8CshaOzUoxr/1I2q/kocGv++AyL/MCRLATDuCP61XNT4gchM/19MOv/+A8T1QoOe7erK1vKMVtbyCABU9v3mpPI2sYj0YA0m8opSvvFEcZTvNeGS/XMXPv3jdgL7gmcu/YRpDvxVAG7/U6ek/f+0rP3cCg78rd/E9UBbhu5h5tbz55Ly8o0UVPdPepTy5fWM9zoMhvLbCo7yHx1o7lGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[ 0.0636567 -1.1126368 0.11791974]\n [-1.2383944 1.160975 0.11790308]\n [ 0.57596016 -0.5579199 0.11792182]\n [ 0.67159265 -1.0235127 0.11790308]]", "desired_goal": "[[ 1.3922362 1.6141685 -0.68408346]\n [ 0.24334928 1.5721947 1.833552 ]\n [-0.93742174 0.8459057 -1.0794001 ]\n [ 1.0925261 -0.8015782 1.3074749 ]]", "observation": "[[-1.3301404 -1.2759309 -0.27121362 1.4806128 0.65214425 1.0402925\n 1.5562496 0.0636567 -1.1126368 0.11791974 -0.00720589 -0.02212492\n -0.02152815 0.03685275 0.02050473 0.05553982 -0.00985807 -0.01999029\n 0.00375857]\n [ 1.0623286 0.59414554 -0.8506316 -0.65479374 -0.05653854 -1.6417972\n 1.035622 -1.2383944 1.160975 0.11790308 -0.00686912 -0.02215271\n -0.02294852 0.03644336 0.02024785 0.05553982 -0.00985808 -0.01999031\n 0.00333834]\n [-1.548102 -0.91461116 -0.52550614 -1.5664347 -2.281848 1.0174346\n 0.17709227 0.57596016 -0.5579199 0.11792182 -0.00706867 -0.02217983\n -0.02210504 0.03637744 0.02068794 0.05534034 -0.0122688 -0.02143318\n 0.00349595]\n [-0.8924683 -1.6232104 -0.25168967 -1.5906334 -0.76212126 -0.60644656\n 1.8274484 0.67159265 -1.0235127 0.11790308 -0.00686911 -0.02215271\n -0.0230584 0.03644336 0.02024785 0.05553982 -0.00985808 -0.01999031\n 0.00333831]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAbQ6sPSXurzsK16M8AAyAPQ9VDL0K16M8PRFxvS+Ujz0K16M8HGSSPYr1Qj0K16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAp/mnPQ++prza+Yc9je6yPSFWFz7WGFU+yO1HPVwKe7zMN20998/7PdZbQruFe1E+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAbQ6sPSXurzsK16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAAAMgD0PVQy9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAAA9EXG9L5SPPQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAHGSSPYr1Qj0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[ 0.08401189 0.00536897 0.02 ]\n [ 0.06252289 -0.03426081 0.02 ]\n [-0.05885433 0.07010686 0.02 ]\n [ 0.07148001 0.04759745 0.02 ]]", "desired_goal": "[[ 0.08201914 -0.0203543 0.06639452]\n [ 0.08736906 0.1477895 0.20810255]\n [ 0.04881075 -0.01532229 0.05791454]\n [ 0.12295526 -0.00296568 0.20457275]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 8.4011890e-02\n 5.3689652e-03 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 6.2522888e-02\n -3.4260806e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -5.8854330e-02\n 7.0106857e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 7.1480006e-02\n 4.7597446e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEkAAAAAAACMAWyUSzKMAXSUR0Cl/hufEn9fdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cl/obwazeGdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cl/nhRqGlAdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cl/tfMwDeTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cl/ygCGN70dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cl/5TLwF1TdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cl/4YeLehxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cl/+XiR4hVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmADcYqG1ydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmAKUA1ejVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmAJPHcUM5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmAPRujynUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmAUXaSLZSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmAa9K28ZldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmAaVc+qzadX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmAgWPDHfedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmAlX/Pw/gdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmAsESmIj4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmArZ5iVjadX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmAxh5Pdl/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmA2pBX0XhdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmA9VBUrCndX2UKGgGR8AwAAAAAAAAaAdLEWgIR0CmA8wZGax5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmA8q814xDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmBCniFTNudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmBOfD+BH1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmBNwzLwF1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmBOOz6ab4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmBUcX3xnWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmBgD4YaYNdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmBfbrcCYDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmBfVQqI8AdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmBlXTEzfrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmBxE3bVSXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmBwVpsXSCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmBwb+98JEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmB2cinpB5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmCCJ3gUDddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmCBXaSLZSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmCBmNBF/hdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmCHrpRoAXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmCTdKNAC5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmCSrTQVsUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmCS8kleF+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmCY9GZuyedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmCklAu7HydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmCjp22XsxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmCjTBqKxcdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmCpWgFotddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmC08gQpWndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmCz+49X9zdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CmC0WBJ7LMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmCzpgb6xgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmC5jzyz5XdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmDFJHRTjvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmDEch1TzedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmDEIwmE5AdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CmDEfn4fwJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmDKMFEAo5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmDV15a/yodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmDVaUaAFxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmDVHSfDk3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmDa2LP2PDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmDmxlpXZHdX2UKGgGR8AuAAAAAAAAaAdLEGgIR0CmDa/IS13MdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmDmtr9EThdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmDsXKB/ZvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmD4EhJRO2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmDsFGwzLwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmD3jx0+1SdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmD83nQpnZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmEIjEehf0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmD8hy0a60dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmEH9S2phndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmENe40/GEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmEZP1UVBVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmENQ5eZ5SdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmEYz1bqyGdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmEe7zK9wndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmEqsEq2BrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmEet5+pfhdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmEqUb961LdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmEwBXCCSSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmE7sV+I/JdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmEvvPLPlddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmE7SeyzHCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmFCZLytmudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmFOb212JSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmFCe6qbSadX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmFN51/2CedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmFTWcjJMhdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmFfJx3mmtdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmFTMvh60IdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmFepaJQ+EdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmFkMl9jPOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmFv3SKFZgdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CmFwMuWa+fdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmFj3C0ngHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CmFviSq2jPdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CmFv2pqASWdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVpwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}
replay.mp4 ADDED
Binary file (995 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -45.7, "std_reward": 12.9, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-09-24T22:37:35.259676"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0436e034dedacf62cc3f0596976c8651c02ad2ee45acb594e088c4c12fad21aa
3
+ size 3013