pszemraj's picture
Update README.md
b7b0a80
|
raw
history blame
4.02 kB
metadata
license: apache-2.0
base_model: BEE-spoke-data/smol_llama-101M-GQA
tags:
  - generated_from_trainer
metrics:
  - accuracy
inference:
  parameters:
    max_new_tokens: 64
    do_sample: true
    temperature: 0.8
    repetition_penalty: 1.15
    no_repeat_ngram_size: 4
    eta_cutoff: 0.0006
    renormalize_logits: true
widget:
  - text: avocado chair
    example_title: avocado chair
  - text: A mysterious potato
    example_title: potato
pipeline_tag: text-generation

smol_llama-101M-GQA-midjourney-messages-cleaned-1024-vN

This model is a fine-tuned version of BEE-spoke-data/smol_llama-101M-GQA on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.8431
  • Accuracy: 0.4682

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.00025
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 17056
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-08
  • lr_scheduler_type: inverse_sqrt
  • lr_scheduler_warmup_ratio: 0.05
  • num_epochs: 1.0

Training results

Training Loss Epoch Step Validation Loss Accuracy
3.3031 0.03 200 3.2643 0.4169
3.1762 0.06 400 3.1674 0.4247
3.0914 0.08 600 3.0850 0.4359
3.0384 0.11 800 3.0371 0.4419
3.0235 0.14 1000 3.0057 0.4467
2.9874 0.17 1200 2.9816 0.4496
2.9708 0.19 1400 2.9650 0.4518
2.9796 0.22 1600 2.9487 0.4541
2.9371 0.25 1800 2.9364 0.4560
2.932 0.28 2000 2.9265 0.4571
2.9272 0.3 2200 2.9175 0.4580
2.935 0.33 2400 2.9115 0.4591
2.9074 0.36 2600 2.9038 0.4600
2.9404 0.39 2800 2.8986 0.4611
2.8896 0.41 3000 2.8938 0.4617
2.8946 0.44 3200 2.8893 0.4624
2.9183 0.47 3400 2.8855 0.4623
2.887 0.5 3600 2.8813 0.4638
2.8823 0.52 3800 2.8780 0.4638
2.9171 0.55 4000 2.8744 0.4642
2.8884 0.58 4200 2.8718 0.4646
2.8875 0.61 4400 2.8700 0.4651
2.9121 0.63 4600 2.8668 0.4653
2.8653 0.66 4800 2.8639 0.4658
2.8603 0.69 5000 2.8625 0.4659
2.8489 0.72 5200 2.8598 0.4661
2.8674 0.74 5400 2.8577 0.4666
2.884 0.77 5600 2.8554 0.4669
2.857 0.8 5800 2.8535 0.4672
2.8747 0.83 6000 2.8516 0.4673
2.8809 0.86 6200 2.8501 0.4672
2.8832 0.88 6400 2.8482 0.4679
2.8817 0.91 6600 2.8472 0.4681
2.8813 0.94 6800 2.8457 0.4684
2.8493 0.97 7000 2.8444 0.4677
2.8455 0.99 7200 2.8431 0.4682

Framework versions

  • Transformers 4.36.0.dev0
  • Pytorch 2.1.0
  • Datasets 2.15.0
  • Tokenizers 0.15.0