metadata
license: apache-2.0
base_model: BEE-spoke-data/smol_llama-101M-GQA
tags:
- generated_from_trainer
metrics:
- accuracy
inference:
parameters:
max_new_tokens: 64
do_sample: true
temperature: 0.8
repetition_penalty: 1.15
no_repeat_ngram_size: 4
eta_cutoff: 0.0006
renormalize_logits: true
widget:
- text: avocado chair
example_title: avocado chair
- text: A mysterious potato
example_title: potato
pipeline_tag: text-generation
smol_llama-101M-GQA-midjourney-messages-cleaned-1024-vN
This model is a fine-tuned version of BEE-spoke-data/smol_llama-101M-GQA on the None dataset. It achieves the following results on the evaluation set:
- Loss: 2.8431
- Accuracy: 0.4682
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.00025
- train_batch_size: 4
- eval_batch_size: 4
- seed: 17056
- gradient_accumulation_steps: 16
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-08
- lr_scheduler_type: inverse_sqrt
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 1.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
3.3031 | 0.03 | 200 | 3.2643 | 0.4169 |
3.1762 | 0.06 | 400 | 3.1674 | 0.4247 |
3.0914 | 0.08 | 600 | 3.0850 | 0.4359 |
3.0384 | 0.11 | 800 | 3.0371 | 0.4419 |
3.0235 | 0.14 | 1000 | 3.0057 | 0.4467 |
2.9874 | 0.17 | 1200 | 2.9816 | 0.4496 |
2.9708 | 0.19 | 1400 | 2.9650 | 0.4518 |
2.9796 | 0.22 | 1600 | 2.9487 | 0.4541 |
2.9371 | 0.25 | 1800 | 2.9364 | 0.4560 |
2.932 | 0.28 | 2000 | 2.9265 | 0.4571 |
2.9272 | 0.3 | 2200 | 2.9175 | 0.4580 |
2.935 | 0.33 | 2400 | 2.9115 | 0.4591 |
2.9074 | 0.36 | 2600 | 2.9038 | 0.4600 |
2.9404 | 0.39 | 2800 | 2.8986 | 0.4611 |
2.8896 | 0.41 | 3000 | 2.8938 | 0.4617 |
2.8946 | 0.44 | 3200 | 2.8893 | 0.4624 |
2.9183 | 0.47 | 3400 | 2.8855 | 0.4623 |
2.887 | 0.5 | 3600 | 2.8813 | 0.4638 |
2.8823 | 0.52 | 3800 | 2.8780 | 0.4638 |
2.9171 | 0.55 | 4000 | 2.8744 | 0.4642 |
2.8884 | 0.58 | 4200 | 2.8718 | 0.4646 |
2.8875 | 0.61 | 4400 | 2.8700 | 0.4651 |
2.9121 | 0.63 | 4600 | 2.8668 | 0.4653 |
2.8653 | 0.66 | 4800 | 2.8639 | 0.4658 |
2.8603 | 0.69 | 5000 | 2.8625 | 0.4659 |
2.8489 | 0.72 | 5200 | 2.8598 | 0.4661 |
2.8674 | 0.74 | 5400 | 2.8577 | 0.4666 |
2.884 | 0.77 | 5600 | 2.8554 | 0.4669 |
2.857 | 0.8 | 5800 | 2.8535 | 0.4672 |
2.8747 | 0.83 | 6000 | 2.8516 | 0.4673 |
2.8809 | 0.86 | 6200 | 2.8501 | 0.4672 |
2.8832 | 0.88 | 6400 | 2.8482 | 0.4679 |
2.8817 | 0.91 | 6600 | 2.8472 | 0.4681 |
2.8813 | 0.94 | 6800 | 2.8457 | 0.4684 |
2.8493 | 0.97 | 7000 | 2.8444 | 0.4677 |
2.8455 | 0.99 | 7200 | 2.8431 | 0.4682 |
Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.0
- Datasets 2.15.0
- Tokenizers 0.15.0