Upload model
Browse files- config.yaml +107 -0
- pytorch_model.bin +3 -0
config.yaml
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# pytorch_lightning==1.8.6
|
2 |
+
seed_everything: 4444
|
3 |
+
|
4 |
+
data:
|
5 |
+
class_path: vocos.dataset.VocosDataModule
|
6 |
+
init_args:
|
7 |
+
train_params:
|
8 |
+
filelist_path: ???
|
9 |
+
sampling_rate: 22050
|
10 |
+
num_samples: 16384
|
11 |
+
batch_size: 16
|
12 |
+
num_workers: 8
|
13 |
+
|
14 |
+
val_params:
|
15 |
+
filelist_path: ???
|
16 |
+
sampling_rate: 22050
|
17 |
+
num_samples: 48384
|
18 |
+
batch_size: 16
|
19 |
+
num_workers: 8
|
20 |
+
|
21 |
+
model:
|
22 |
+
class_path: vocos.experiment.VocosExp
|
23 |
+
init_args:
|
24 |
+
sample_rate: 22050
|
25 |
+
initial_learning_rate: 1e-3
|
26 |
+
mel_loss_coeff: 45
|
27 |
+
mrd_loss_coeff: 0.1 # original value 0.1
|
28 |
+
num_warmup_steps: 500 # Optimizers warmup steps
|
29 |
+
pretrain_mel_steps: 0 # 0 means GAN objective from the first iteration
|
30 |
+
|
31 |
+
# automatic evaluation
|
32 |
+
evaluate_utmos: true
|
33 |
+
evaluate_pesq: true
|
34 |
+
evaluate_periodicty: true
|
35 |
+
|
36 |
+
feature_extractor:
|
37 |
+
class_path: vocos.feature_extractors.MelSpectrogramFeatures
|
38 |
+
init_args:
|
39 |
+
sample_rate: 22050
|
40 |
+
n_fft: 1024
|
41 |
+
hop_length: 256
|
42 |
+
n_mels: 80
|
43 |
+
padding: same
|
44 |
+
f_min: 0
|
45 |
+
f_max: 8000
|
46 |
+
norm: "slaney"
|
47 |
+
mel_scale: "slaney"
|
48 |
+
clip_val: 1e-5
|
49 |
+
|
50 |
+
|
51 |
+
backbone:
|
52 |
+
class_path: vocos.models.VocosBackbone
|
53 |
+
init_args:
|
54 |
+
input_channels: 80
|
55 |
+
dim: 512
|
56 |
+
intermediate_dim: 1536
|
57 |
+
num_layers: 8
|
58 |
+
|
59 |
+
head:
|
60 |
+
class_path: vocos.heads.WaveNextHead
|
61 |
+
init_args:
|
62 |
+
dim: 512
|
63 |
+
n_fft: 1024
|
64 |
+
hop_length: 256
|
65 |
+
padding: same
|
66 |
+
|
67 |
+
melspec_loss:
|
68 |
+
class_path: vocos.loss.MelSpecReconstructionLoss
|
69 |
+
init_args:
|
70 |
+
sample_rate: 22050
|
71 |
+
n_fft: 1024
|
72 |
+
hop_length: 256
|
73 |
+
n_mels: 128
|
74 |
+
f_min: 0
|
75 |
+
f_max: 11000
|
76 |
+
norm: "slaney"
|
77 |
+
mel_scale: "slaney"
|
78 |
+
clip_val: 1e-5
|
79 |
+
|
80 |
+
|
81 |
+
trainer:
|
82 |
+
logger:
|
83 |
+
class_path: pytorch_lightning.loggers.TensorBoardLogger
|
84 |
+
init_args:
|
85 |
+
save_dir: ???
|
86 |
+
callbacks:
|
87 |
+
- class_path: pytorch_lightning.callbacks.LearningRateMonitor
|
88 |
+
- class_path: pytorch_lightning.callbacks.ModelSummary
|
89 |
+
init_args:
|
90 |
+
max_depth: 2
|
91 |
+
- class_path: pytorch_lightning.callbacks.ModelCheckpoint
|
92 |
+
init_args:
|
93 |
+
monitor: val_loss
|
94 |
+
filename: vocos_checkpoint_{epoch}_{step}_{val_loss:.4f}
|
95 |
+
save_top_k: 3
|
96 |
+
save_last: true
|
97 |
+
- class_path: vocos.helpers.GradNormCallback
|
98 |
+
|
99 |
+
# Lightning calculates max_steps across all optimizer steps (rather than number of batches)
|
100 |
+
# This equals to 1M steps per generator and 1M per discriminator
|
101 |
+
max_steps: 2000000
|
102 |
+
# You might want to limit val batches when evaluating all the metrics, as they are time-consuming
|
103 |
+
limit_val_batches: 50
|
104 |
+
accelerator: gpu
|
105 |
+
strategy: ddp
|
106 |
+
devices: [0]
|
107 |
+
log_every_n_steps: 250
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3349cbad46af135e27a5df03668b1faf980fd11e150285f8435c7641330d1803
|
3 |
+
size 55097575
|