--- license: apache-2.0 base_model: openai/whisper-base tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_17_0 metrics: - wer model-index: - name: whisper-base-common_voice_17_0-id results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_17_0 id type: mozilla-foundation/common_voice_17_0 config: id split: None args: id metrics: - name: Wer type: wer value: 0.1183813634043343 --- # whisper-base-common_voice_17_0-id This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the mozilla-foundation/common_voice_17_0 id dataset. It achieves the following results on the evaluation set: - Loss: 0.1441 - Wer: 0.1184 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 20000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:-----:|:---------------:|:------:| | 0.3523 | 0.4229 | 1000 | 0.3129 | 0.2365 | | 0.3002 | 0.8458 | 2000 | 0.2391 | 0.1964 | | 0.1718 | 1.2688 | 3000 | 0.2049 | 0.1659 | | 0.1537 | 1.6917 | 4000 | 0.1817 | 0.1516 | | 0.0807 | 2.1146 | 5000 | 0.1643 | 0.1499 | | 0.089 | 2.5375 | 6000 | 0.1562 | 0.1348 | | 0.0883 | 2.9605 | 7000 | 0.1452 | 0.1268 | | 0.0368 | 3.3834 | 8000 | 0.1446 | 0.1324 | | 0.0463 | 3.8063 | 9000 | 0.1401 | 0.1286 | | 0.0278 | 4.2292 | 10000 | 0.1436 | 0.1181 | | 0.0157 | 4.6521 | 11000 | 0.1406 | 0.1125 | | 0.0201 | 5.0751 | 12000 | 0.1392 | 0.1144 | | 0.0121 | 5.4980 | 13000 | 0.1405 | 0.1129 | | 0.0074 | 5.9209 | 14000 | 0.1385 | 0.1195 | | 0.0064 | 6.3438 | 15000 | 0.1410 | 0.1115 | | 0.0066 | 6.7668 | 16000 | 0.1415 | 0.1184 | | 0.0029 | 7.1897 | 17000 | 0.1426 | 0.1190 | | 0.0024 | 7.6126 | 18000 | 0.1429 | 0.1178 | | 0.0021 | 8.0355 | 19000 | 0.1434 | 0.1180 | | 0.0018 | 8.4584 | 20000 | 0.1441 | 0.1184 | ### Framework versions - Transformers 4.42.0.dev0 - Pytorch 2.1.0 - Datasets 2.19.1 - Tokenizers 0.19.1