w2v-bert-2.0-malayalam_mixeddataset_thre

This model is a fine-tuned version of facebook/w2v-bert-2.0 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1604
  • Wer: 0.1244

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
1.1974 0.47 600 0.3732 0.4971
0.1677 0.95 1200 0.2552 0.3411
0.1229 1.42 1800 0.2184 0.3123
0.1041 1.9 2400 0.2044 0.2921
0.0825 2.37 3000 0.2150 0.2667
0.0756 2.85 3600 0.1882 0.2361
0.0627 3.32 4200 0.1735 0.2493
0.0557 3.8 4800 0.1653 0.2117
0.0454 4.27 5400 0.1669 0.1891
0.0394 4.74 6000 0.1610 0.1903
0.0363 5.22 6600 0.1654 0.1699
0.0278 5.69 7200 0.1465 0.1640
0.025 6.17 7800 0.1503 0.1617
0.0198 6.64 8400 0.1429 0.1466
0.0174 7.12 9000 0.1440 0.1453
0.013 7.59 9600 0.1496 0.1433
0.0125 8.07 10200 0.1465 0.1274
0.0076 8.54 10800 0.1479 0.1349
0.0076 9.02 11400 0.1521 0.1229
0.0041 9.49 12000 0.1600 0.1291
0.0038 9.96 12600 0.1604 0.1244

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.1.1+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.1
Downloads last month
12
Safetensors
Model size
606M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Bajiyo/w2v-bert-2.0-malayalam_mixeddataset_thre

Finetuned
(208)
this model