--- license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - gtzan metrics: - accuracy model-index: - name: whisper-small-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: gtzan type: gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.91 --- # whisper-small-finetuned-gtzan This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the gtzan dataset. It achieves the following results on the evaluation set: - Loss: 0.4896 - Accuracy: 0.91 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.292 | 1.0 | 100 | 1.3642 | 0.595 | | 1.0263 | 2.0 | 200 | 0.9241 | 0.725 | | 0.5906 | 3.0 | 300 | 0.9602 | 0.68 | | 0.2665 | 4.0 | 400 | 0.8529 | 0.745 | | 0.2222 | 5.0 | 500 | 0.6671 | 0.835 | | 0.1649 | 6.0 | 600 | 0.4792 | 0.9 | | 0.0018 | 7.0 | 700 | 0.7901 | 0.87 | | 0.0303 | 8.0 | 800 | 0.4475 | 0.925 | | 0.0011 | 9.0 | 900 | 0.5972 | 0.895 | | 0.0008 | 10.0 | 1000 | 0.5501 | 0.9 | | 0.0007 | 11.0 | 1100 | 0.5916 | 0.895 | | 0.0007 | 12.0 | 1200 | 0.5719 | 0.9 | | 0.0007 | 13.0 | 1300 | 0.5082 | 0.92 | | 0.0007 | 14.0 | 1400 | 0.4954 | 0.905 | | 0.0006 | 15.0 | 1500 | 0.4896 | 0.91 | ### Framework versions - Transformers 4.34.1 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1