--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer datasets: - gtzan metrics: - accuracy model-index: - name: whisper-tiny-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: gtzan type: gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.865 --- # whisper-tiny-finetuned-gtzan This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the gtzan dataset. It achieves the following results on the evaluation set: - Loss: 0.5357 - Accuracy: 0.865 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Accuracy | Validation Loss | |:-------------:|:-----:|:----:|:--------:|:---------------:| | 1.8988 | 1.0 | 50 | 0.475 | 1.8064 | | 1.2155 | 2.0 | 100 | 0.66 | 1.2221 | | 0.9136 | 3.0 | 150 | 0.76 | 0.9259 | | 0.7999 | 4.0 | 200 | 0.8 | 0.7412 | | 0.4499 | 5.0 | 250 | 0.785 | 0.6758 | | 0.2986 | 6.0 | 300 | 0.845 | 0.5601 | | 0.2432 | 7.0 | 350 | 0.825 | 0.5678 | | 0.1316 | 8.0 | 400 | 0.845 | 0.5153 | | 0.1685 | 9.0 | 450 | 0.86 | 0.4840 | | 0.1344 | 10.0 | 500 | 0.86 | 0.4803 | | 0.0499 | 11.0 | 550 | 0.5167 | 0.855 | | 0.0969 | 12.0 | 600 | 0.5370 | 0.85 | | 0.0351 | 13.0 | 650 | 0.5022 | 0.86 | | 0.0452 | 14.0 | 700 | 0.5289 | 0.855 | | 0.0167 | 15.0 | 750 | 0.5357 | 0.865 | ### Framework versions - Transformers 4.34.1 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1