End of training
Browse files
README.md
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-nc-4.0
|
3 |
+
base_model: facebook/mms-1b-all
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- wer
|
8 |
+
model-index:
|
9 |
+
- name: wav2vec2-large-mms-1b-kazakh-speech2ner-kscsyn-8b-4ep
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# wav2vec2-large-mms-1b-kazakh-speech2ner-kscsyn-8b-4ep
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) on the None dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: nan
|
21 |
+
- Wer: 1.0
|
22 |
+
|
23 |
+
## Model description
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Intended uses & limitations
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training and evaluation data
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training procedure
|
36 |
+
|
37 |
+
### Training hyperparameters
|
38 |
+
|
39 |
+
The following hyperparameters were used during training:
|
40 |
+
- learning_rate: 1e-05
|
41 |
+
- train_batch_size: 8
|
42 |
+
- eval_batch_size: 8
|
43 |
+
- seed: 42
|
44 |
+
- distributed_type: multi-GPU
|
45 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
46 |
+
- lr_scheduler_type: linear
|
47 |
+
- lr_scheduler_warmup_steps: 1000
|
48 |
+
- num_epochs: 4
|
49 |
+
|
50 |
+
### Training results
|
51 |
+
|
52 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
53 |
+
|:-------------:|:-----:|:------:|:---------------:|:------:|
|
54 |
+
| 6.6358 | 0.07 | 2000 | 6.5080 | 1.0000 |
|
55 |
+
| 6.6338 | 0.15 | 4000 | 6.5080 | 1.0000 |
|
56 |
+
| 0.0 | 0.22 | 6000 | nan | 1.0 |
|
57 |
+
| 0.0 | 0.3 | 8000 | nan | 1.0 |
|
58 |
+
| 0.0 | 0.37 | 10000 | nan | 1.0 |
|
59 |
+
| 0.0 | 0.44 | 12000 | nan | 1.0 |
|
60 |
+
| 0.0 | 0.52 | 14000 | nan | 1.0 |
|
61 |
+
| 0.0 | 0.59 | 16000 | nan | 1.0 |
|
62 |
+
| 0.0 | 0.66 | 18000 | nan | 1.0 |
|
63 |
+
| 0.0 | 0.74 | 20000 | nan | 1.0 |
|
64 |
+
| 0.0 | 0.81 | 22000 | nan | 1.0 |
|
65 |
+
| 0.0 | 0.89 | 24000 | nan | 1.0 |
|
66 |
+
| 0.0 | 0.96 | 26000 | nan | 1.0 |
|
67 |
+
| 0.0 | 1.03 | 28000 | nan | 1.0 |
|
68 |
+
| 0.0 | 1.11 | 30000 | nan | 1.0 |
|
69 |
+
| 0.0 | 1.18 | 32000 | nan | 1.0 |
|
70 |
+
| 0.0 | 1.25 | 34000 | nan | 1.0 |
|
71 |
+
| 0.0 | 1.33 | 36000 | nan | 1.0 |
|
72 |
+
| 0.0 | 1.4 | 38000 | nan | 1.0 |
|
73 |
+
| 0.0 | 1.48 | 40000 | nan | 1.0 |
|
74 |
+
| 0.0 | 1.55 | 42000 | nan | 1.0 |
|
75 |
+
| 0.0 | 1.62 | 44000 | nan | 1.0 |
|
76 |
+
| 0.0 | 1.7 | 46000 | nan | 1.0 |
|
77 |
+
| 0.0 | 1.77 | 48000 | nan | 1.0 |
|
78 |
+
| 0.0 | 1.84 | 50000 | nan | 1.0 |
|
79 |
+
| 0.0 | 1.92 | 52000 | nan | 1.0 |
|
80 |
+
| 0.0 | 1.99 | 54000 | nan | 1.0 |
|
81 |
+
| 0.0 | 2.07 | 56000 | nan | 1.0 |
|
82 |
+
| 0.0 | 2.14 | 58000 | nan | 1.0 |
|
83 |
+
| 0.0 | 2.21 | 60000 | nan | 1.0 |
|
84 |
+
| 0.0 | 2.29 | 62000 | nan | 1.0 |
|
85 |
+
| 0.0 | 2.36 | 64000 | nan | 1.0 |
|
86 |
+
| 0.0 | 2.43 | 66000 | nan | 1.0 |
|
87 |
+
| 0.0 | 2.51 | 68000 | nan | 1.0 |
|
88 |
+
| 0.0 | 2.58 | 70000 | nan | 1.0 |
|
89 |
+
| 0.0 | 2.66 | 72000 | nan | 1.0 |
|
90 |
+
| 0.0 | 2.73 | 74000 | nan | 1.0 |
|
91 |
+
| 0.0 | 2.8 | 76000 | nan | 1.0 |
|
92 |
+
| 0.0 | 2.88 | 78000 | nan | 1.0 |
|
93 |
+
| 0.0 | 2.95 | 80000 | nan | 1.0 |
|
94 |
+
| 0.0 | 3.02 | 82000 | nan | 1.0 |
|
95 |
+
| 0.0 | 3.1 | 84000 | nan | 1.0 |
|
96 |
+
| 0.0 | 3.17 | 86000 | nan | 1.0 |
|
97 |
+
| 0.0 | 3.25 | 88000 | nan | 1.0 |
|
98 |
+
| 0.0 | 3.32 | 90000 | nan | 1.0 |
|
99 |
+
| 0.0 | 3.39 | 92000 | nan | 1.0 |
|
100 |
+
| 0.0 | 3.47 | 94000 | nan | 1.0 |
|
101 |
+
| 0.0 | 3.54 | 96000 | nan | 1.0 |
|
102 |
+
| 0.0 | 3.61 | 98000 | nan | 1.0 |
|
103 |
+
| 0.0 | 3.69 | 100000 | nan | 1.0 |
|
104 |
+
| 0.0 | 3.76 | 102000 | nan | 1.0 |
|
105 |
+
| 0.0 | 3.84 | 104000 | nan | 1.0 |
|
106 |
+
| 0.0 | 3.91 | 106000 | nan | 1.0 |
|
107 |
+
| 0.0 | 3.98 | 108000 | nan | 1.0 |
|
108 |
+
|
109 |
+
|
110 |
+
### Framework versions
|
111 |
+
|
112 |
+
- Transformers 4.33.0.dev0
|
113 |
+
- Pytorch 2.0.1+cu117
|
114 |
+
- Datasets 2.13.1
|
115 |
+
- Tokenizers 0.13.3
|