Benedict-L
commited on
Commit
•
00f4a0d
1
Parent(s):
aec0f55
End of training
Browse files- README.md +81 -0
- logs/events.out.tfevents.1718873323.HCIDC-SV-DMZ-ORC-NODE02.3919717.0 +2 -2
- model.safetensors +1 -1
- preprocessor_config.json +25 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +80 -0
- vocab.txt +0 -0
README.md
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
base_model: microsoft/layoutlm-base-uncased
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- funsd
|
8 |
+
model-index:
|
9 |
+
- name: layoutlm-funsd1
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# layoutlm-funsd1
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.6985
|
21 |
+
- Answer: {'precision': 0.7292134831460674, 'recall': 0.8022249690976514, 'f1': 0.7639788110653325, 'number': 809}
|
22 |
+
- Header: {'precision': 0.2962962962962963, 'recall': 0.33613445378151263, 'f1': 0.31496062992125984, 'number': 119}
|
23 |
+
- Question: {'precision': 0.7711267605633803, 'recall': 0.8225352112676056, 'f1': 0.7960018173557474, 'number': 1065}
|
24 |
+
- Overall Precision: 0.7242
|
25 |
+
- Overall Recall: 0.7852
|
26 |
+
- Overall F1: 0.7535
|
27 |
+
- Overall Accuracy: 0.8108
|
28 |
+
|
29 |
+
## Model description
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Intended uses & limitations
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training and evaluation data
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Training procedure
|
42 |
+
|
43 |
+
### Training hyperparameters
|
44 |
+
|
45 |
+
The following hyperparameters were used during training:
|
46 |
+
- learning_rate: 3e-05
|
47 |
+
- train_batch_size: 16
|
48 |
+
- eval_batch_size: 8
|
49 |
+
- seed: 42
|
50 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
+
- lr_scheduler_type: linear
|
52 |
+
- num_epochs: 15
|
53 |
+
- mixed_precision_training: Native AMP
|
54 |
+
|
55 |
+
### Training results
|
56 |
+
|
57 |
+
| Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|
58 |
+
|:-------------:|:-----:|:----:|:---------------:|:----------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
|
59 |
+
| 1.7326 | 1.0 | 10 | 1.5225 | {'precision': 0.0576307363927428, 'recall': 0.06674907292954264, 'f1': 0.06185567010309278, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.2126899016979446, 'recall': 0.22347417840375586, 'f1': 0.21794871794871795, 'number': 1065} | 0.1420 | 0.1465 | 0.1442 | 0.4302 |
|
60 |
+
| 1.3559 | 2.0 | 20 | 1.1907 | {'precision': 0.2647058823529412, 'recall': 0.22249690976514216, 'f1': 0.24177300201477503, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.48519736842105265, 'recall': 0.5539906103286385, 'f1': 0.5173169662428759, 'number': 1065} | 0.4055 | 0.3864 | 0.3957 | 0.5967 |
|
61 |
+
| 1.0329 | 3.0 | 30 | 0.9021 | {'precision': 0.4879518072289157, 'recall': 0.5006180469715699, 'f1': 0.49420378279438687, 'number': 809} | {'precision': 0.1, 'recall': 0.04201680672268908, 'f1': 0.059171597633136105, 'number': 119} | {'precision': 0.647636039250669, 'recall': 0.6816901408450704, 'f1': 0.6642268984446478, 'number': 1065} | 0.5677 | 0.5700 | 0.5689 | 0.7304 |
|
62 |
+
| 0.779 | 4.0 | 40 | 0.7524 | {'precision': 0.6258205689277899, 'recall': 0.7070457354758962, 'f1': 0.6639582124201974, 'number': 809} | {'precision': 0.25675675675675674, 'recall': 0.15966386554621848, 'f1': 0.19689119170984457, 'number': 119} | {'precision': 0.6596814752724225, 'recall': 0.7389671361502348, 'f1': 0.6970770593445527, 'number': 1065} | 0.6318 | 0.6914 | 0.6603 | 0.7734 |
|
63 |
+
| 0.6249 | 5.0 | 50 | 0.6899 | {'precision': 0.6615553121577218, 'recall': 0.7466007416563659, 'f1': 0.7015098722415796, 'number': 809} | {'precision': 0.3157894736842105, 'recall': 0.20168067226890757, 'f1': 0.24615384615384614, 'number': 119} | {'precision': 0.6818181818181818, 'recall': 0.7746478873239436, 'f1': 0.7252747252747253, 'number': 1065} | 0.6608 | 0.7291 | 0.6932 | 0.7938 |
|
64 |
+
| 0.5376 | 6.0 | 60 | 0.6911 | {'precision': 0.6773504273504274, 'recall': 0.7836835599505563, 'f1': 0.7266475644699141, 'number': 809} | {'precision': 0.29411764705882354, 'recall': 0.21008403361344538, 'f1': 0.2450980392156863, 'number': 119} | {'precision': 0.7166377816291161, 'recall': 0.7765258215962442, 'f1': 0.7453808021631364, 'number': 1065} | 0.6832 | 0.7456 | 0.7131 | 0.7926 |
|
65 |
+
| 0.4627 | 7.0 | 70 | 0.6573 | {'precision': 0.6983783783783784, 'recall': 0.7985166872682324, 'f1': 0.7450980392156863, 'number': 809} | {'precision': 0.2882882882882883, 'recall': 0.2689075630252101, 'f1': 0.2782608695652174, 'number': 119} | {'precision': 0.735494880546075, 'recall': 0.8093896713615023, 'f1': 0.7706750111756816, 'number': 1065} | 0.6975 | 0.7727 | 0.7332 | 0.8012 |
|
66 |
+
| 0.4082 | 8.0 | 80 | 0.6650 | {'precision': 0.6871741397288843, 'recall': 0.8145859085290482, 'f1': 0.7454751131221721, 'number': 809} | {'precision': 0.28440366972477066, 'recall': 0.2605042016806723, 'f1': 0.2719298245614035, 'number': 119} | {'precision': 0.7446626814688301, 'recall': 0.8187793427230047, 'f1': 0.7799642218246869, 'number': 1065} | 0.6976 | 0.7837 | 0.7382 | 0.8040 |
|
67 |
+
| 0.3665 | 9.0 | 90 | 0.6682 | {'precision': 0.7011995637949836, 'recall': 0.7948084054388134, 'f1': 0.7450753186558517, 'number': 809} | {'precision': 0.3076923076923077, 'recall': 0.3025210084033613, 'f1': 0.30508474576271183, 'number': 119} | {'precision': 0.7519582245430809, 'recall': 0.8112676056338028, 'f1': 0.7804878048780487, 'number': 1065} | 0.7068 | 0.7742 | 0.7390 | 0.8071 |
|
68 |
+
| 0.3554 | 10.0 | 100 | 0.6680 | {'precision': 0.7168338907469343, 'recall': 0.7948084054388134, 'f1': 0.753810082063306, 'number': 809} | {'precision': 0.3333333333333333, 'recall': 0.35294117647058826, 'f1': 0.34285714285714286, 'number': 119} | {'precision': 0.7586206896551724, 'recall': 0.8262910798122066, 'f1': 0.7910112359550561, 'number': 1065} | 0.7169 | 0.7852 | 0.7495 | 0.8101 |
|
69 |
+
| 0.3056 | 11.0 | 110 | 0.6786 | {'precision': 0.707027027027027, 'recall': 0.8084054388133498, 'f1': 0.7543252595155711, 'number': 809} | {'precision': 0.296, 'recall': 0.31092436974789917, 'f1': 0.30327868852459017, 'number': 119} | {'precision': 0.7668393782383419, 'recall': 0.8338028169014085, 'f1': 0.7989203778677464, 'number': 1065} | 0.7151 | 0.7923 | 0.7517 | 0.8087 |
|
70 |
+
| 0.2977 | 12.0 | 120 | 0.6900 | {'precision': 0.7291196388261851, 'recall': 0.7985166872682324, 'f1': 0.7622418879056048, 'number': 809} | {'precision': 0.32575757575757575, 'recall': 0.36134453781512604, 'f1': 0.3426294820717131, 'number': 119} | {'precision': 0.7726872246696035, 'recall': 0.8234741784037559, 'f1': 0.7972727272727272, 'number': 1065} | 0.7274 | 0.7858 | 0.7554 | 0.8097 |
|
71 |
+
| 0.2788 | 13.0 | 130 | 0.6937 | {'precision': 0.7224669603524229, 'recall': 0.8108776266996292, 'f1': 0.7641234711706465, 'number': 809} | {'precision': 0.3023255813953488, 'recall': 0.3277310924369748, 'f1': 0.314516129032258, 'number': 119} | {'precision': 0.7724867724867724, 'recall': 0.8225352112676056, 'f1': 0.7967257844474761, 'number': 1065} | 0.7236 | 0.7883 | 0.7546 | 0.8099 |
|
72 |
+
| 0.2593 | 14.0 | 140 | 0.6981 | {'precision': 0.7278835386338186, 'recall': 0.8034610630407911, 'f1': 0.7638072855464161, 'number': 809} | {'precision': 0.29850746268656714, 'recall': 0.33613445378151263, 'f1': 0.31620553359683795, 'number': 119} | {'precision': 0.7715289982425307, 'recall': 0.8244131455399061, 'f1': 0.7970948706309579, 'number': 1065} | 0.7242 | 0.7868 | 0.7542 | 0.8110 |
|
73 |
+
| 0.2581 | 15.0 | 150 | 0.6985 | {'precision': 0.7292134831460674, 'recall': 0.8022249690976514, 'f1': 0.7639788110653325, 'number': 809} | {'precision': 0.2962962962962963, 'recall': 0.33613445378151263, 'f1': 0.31496062992125984, 'number': 119} | {'precision': 0.7711267605633803, 'recall': 0.8225352112676056, 'f1': 0.7960018173557474, 'number': 1065} | 0.7242 | 0.7852 | 0.7535 | 0.8108 |
|
74 |
+
|
75 |
+
|
76 |
+
### Framework versions
|
77 |
+
|
78 |
+
- Transformers 4.41.2
|
79 |
+
- Pytorch 2.3.1+cu121
|
80 |
+
- Datasets 2.19.2
|
81 |
+
- Tokenizers 0.19.1
|
logs/events.out.tfevents.1718873323.HCIDC-SV-DMZ-ORC-NODE02.3919717.0
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f64852081cffd323666aaa9fa0d839bfd0e909f73daff9da9da463714c1861b3
|
3 |
+
size 15988
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 450558212
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2deafbe07c01a1eaca0e7cdf62cfec24a4b4fe2b399102629a3fab9ad6edde25
|
3 |
size 450558212
|
preprocessor_config.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_valid_processor_keys": [
|
3 |
+
"images",
|
4 |
+
"do_resize",
|
5 |
+
"size",
|
6 |
+
"resample",
|
7 |
+
"apply_ocr",
|
8 |
+
"ocr_lang",
|
9 |
+
"tesseract_config",
|
10 |
+
"return_tensors",
|
11 |
+
"data_format",
|
12 |
+
"input_data_format"
|
13 |
+
],
|
14 |
+
"apply_ocr": true,
|
15 |
+
"do_resize": true,
|
16 |
+
"image_processor_type": "LayoutLMv2ImageProcessor",
|
17 |
+
"ocr_lang": null,
|
18 |
+
"processor_class": "LayoutLMv2Processor",
|
19 |
+
"resample": 2,
|
20 |
+
"size": {
|
21 |
+
"height": 224,
|
22 |
+
"width": 224
|
23 |
+
},
|
24 |
+
"tesseract_config": ""
|
25 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"additional_special_tokens": [],
|
45 |
+
"apply_ocr": false,
|
46 |
+
"clean_up_tokenization_spaces": true,
|
47 |
+
"cls_token": "[CLS]",
|
48 |
+
"cls_token_box": [
|
49 |
+
0,
|
50 |
+
0,
|
51 |
+
0,
|
52 |
+
0
|
53 |
+
],
|
54 |
+
"do_basic_tokenize": true,
|
55 |
+
"do_lower_case": true,
|
56 |
+
"mask_token": "[MASK]",
|
57 |
+
"model_max_length": 512,
|
58 |
+
"never_split": null,
|
59 |
+
"only_label_first_subword": true,
|
60 |
+
"pad_token": "[PAD]",
|
61 |
+
"pad_token_box": [
|
62 |
+
0,
|
63 |
+
0,
|
64 |
+
0,
|
65 |
+
0
|
66 |
+
],
|
67 |
+
"pad_token_label": -100,
|
68 |
+
"processor_class": "LayoutLMv2Processor",
|
69 |
+
"sep_token": "[SEP]",
|
70 |
+
"sep_token_box": [
|
71 |
+
1000,
|
72 |
+
1000,
|
73 |
+
1000,
|
74 |
+
1000
|
75 |
+
],
|
76 |
+
"strip_accents": null,
|
77 |
+
"tokenize_chinese_chars": true,
|
78 |
+
"tokenizer_class": "LayoutLMv2Tokenizer",
|
79 |
+
"unk_token": "[UNK]"
|
80 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|