Benedict-L commited on
Commit
00f4a0d
1 Parent(s): aec0f55

End of training

Browse files
README.md ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: microsoft/layoutlm-base-uncased
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - funsd
8
+ model-index:
9
+ - name: layoutlm-funsd1
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # layoutlm-funsd1
17
+
18
+ This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 0.6985
21
+ - Answer: {'precision': 0.7292134831460674, 'recall': 0.8022249690976514, 'f1': 0.7639788110653325, 'number': 809}
22
+ - Header: {'precision': 0.2962962962962963, 'recall': 0.33613445378151263, 'f1': 0.31496062992125984, 'number': 119}
23
+ - Question: {'precision': 0.7711267605633803, 'recall': 0.8225352112676056, 'f1': 0.7960018173557474, 'number': 1065}
24
+ - Overall Precision: 0.7242
25
+ - Overall Recall: 0.7852
26
+ - Overall F1: 0.7535
27
+ - Overall Accuracy: 0.8108
28
+
29
+ ## Model description
30
+
31
+ More information needed
32
+
33
+ ## Intended uses & limitations
34
+
35
+ More information needed
36
+
37
+ ## Training and evaluation data
38
+
39
+ More information needed
40
+
41
+ ## Training procedure
42
+
43
+ ### Training hyperparameters
44
+
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 3e-05
47
+ - train_batch_size: 16
48
+ - eval_batch_size: 8
49
+ - seed: 42
50
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
+ - lr_scheduler_type: linear
52
+ - num_epochs: 15
53
+ - mixed_precision_training: Native AMP
54
+
55
+ ### Training results
56
+
57
+ | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
58
+ |:-------------:|:-----:|:----:|:---------------:|:----------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
59
+ | 1.7326 | 1.0 | 10 | 1.5225 | {'precision': 0.0576307363927428, 'recall': 0.06674907292954264, 'f1': 0.06185567010309278, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.2126899016979446, 'recall': 0.22347417840375586, 'f1': 0.21794871794871795, 'number': 1065} | 0.1420 | 0.1465 | 0.1442 | 0.4302 |
60
+ | 1.3559 | 2.0 | 20 | 1.1907 | {'precision': 0.2647058823529412, 'recall': 0.22249690976514216, 'f1': 0.24177300201477503, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.48519736842105265, 'recall': 0.5539906103286385, 'f1': 0.5173169662428759, 'number': 1065} | 0.4055 | 0.3864 | 0.3957 | 0.5967 |
61
+ | 1.0329 | 3.0 | 30 | 0.9021 | {'precision': 0.4879518072289157, 'recall': 0.5006180469715699, 'f1': 0.49420378279438687, 'number': 809} | {'precision': 0.1, 'recall': 0.04201680672268908, 'f1': 0.059171597633136105, 'number': 119} | {'precision': 0.647636039250669, 'recall': 0.6816901408450704, 'f1': 0.6642268984446478, 'number': 1065} | 0.5677 | 0.5700 | 0.5689 | 0.7304 |
62
+ | 0.779 | 4.0 | 40 | 0.7524 | {'precision': 0.6258205689277899, 'recall': 0.7070457354758962, 'f1': 0.6639582124201974, 'number': 809} | {'precision': 0.25675675675675674, 'recall': 0.15966386554621848, 'f1': 0.19689119170984457, 'number': 119} | {'precision': 0.6596814752724225, 'recall': 0.7389671361502348, 'f1': 0.6970770593445527, 'number': 1065} | 0.6318 | 0.6914 | 0.6603 | 0.7734 |
63
+ | 0.6249 | 5.0 | 50 | 0.6899 | {'precision': 0.6615553121577218, 'recall': 0.7466007416563659, 'f1': 0.7015098722415796, 'number': 809} | {'precision': 0.3157894736842105, 'recall': 0.20168067226890757, 'f1': 0.24615384615384614, 'number': 119} | {'precision': 0.6818181818181818, 'recall': 0.7746478873239436, 'f1': 0.7252747252747253, 'number': 1065} | 0.6608 | 0.7291 | 0.6932 | 0.7938 |
64
+ | 0.5376 | 6.0 | 60 | 0.6911 | {'precision': 0.6773504273504274, 'recall': 0.7836835599505563, 'f1': 0.7266475644699141, 'number': 809} | {'precision': 0.29411764705882354, 'recall': 0.21008403361344538, 'f1': 0.2450980392156863, 'number': 119} | {'precision': 0.7166377816291161, 'recall': 0.7765258215962442, 'f1': 0.7453808021631364, 'number': 1065} | 0.6832 | 0.7456 | 0.7131 | 0.7926 |
65
+ | 0.4627 | 7.0 | 70 | 0.6573 | {'precision': 0.6983783783783784, 'recall': 0.7985166872682324, 'f1': 0.7450980392156863, 'number': 809} | {'precision': 0.2882882882882883, 'recall': 0.2689075630252101, 'f1': 0.2782608695652174, 'number': 119} | {'precision': 0.735494880546075, 'recall': 0.8093896713615023, 'f1': 0.7706750111756816, 'number': 1065} | 0.6975 | 0.7727 | 0.7332 | 0.8012 |
66
+ | 0.4082 | 8.0 | 80 | 0.6650 | {'precision': 0.6871741397288843, 'recall': 0.8145859085290482, 'f1': 0.7454751131221721, 'number': 809} | {'precision': 0.28440366972477066, 'recall': 0.2605042016806723, 'f1': 0.2719298245614035, 'number': 119} | {'precision': 0.7446626814688301, 'recall': 0.8187793427230047, 'f1': 0.7799642218246869, 'number': 1065} | 0.6976 | 0.7837 | 0.7382 | 0.8040 |
67
+ | 0.3665 | 9.0 | 90 | 0.6682 | {'precision': 0.7011995637949836, 'recall': 0.7948084054388134, 'f1': 0.7450753186558517, 'number': 809} | {'precision': 0.3076923076923077, 'recall': 0.3025210084033613, 'f1': 0.30508474576271183, 'number': 119} | {'precision': 0.7519582245430809, 'recall': 0.8112676056338028, 'f1': 0.7804878048780487, 'number': 1065} | 0.7068 | 0.7742 | 0.7390 | 0.8071 |
68
+ | 0.3554 | 10.0 | 100 | 0.6680 | {'precision': 0.7168338907469343, 'recall': 0.7948084054388134, 'f1': 0.753810082063306, 'number': 809} | {'precision': 0.3333333333333333, 'recall': 0.35294117647058826, 'f1': 0.34285714285714286, 'number': 119} | {'precision': 0.7586206896551724, 'recall': 0.8262910798122066, 'f1': 0.7910112359550561, 'number': 1065} | 0.7169 | 0.7852 | 0.7495 | 0.8101 |
69
+ | 0.3056 | 11.0 | 110 | 0.6786 | {'precision': 0.707027027027027, 'recall': 0.8084054388133498, 'f1': 0.7543252595155711, 'number': 809} | {'precision': 0.296, 'recall': 0.31092436974789917, 'f1': 0.30327868852459017, 'number': 119} | {'precision': 0.7668393782383419, 'recall': 0.8338028169014085, 'f1': 0.7989203778677464, 'number': 1065} | 0.7151 | 0.7923 | 0.7517 | 0.8087 |
70
+ | 0.2977 | 12.0 | 120 | 0.6900 | {'precision': 0.7291196388261851, 'recall': 0.7985166872682324, 'f1': 0.7622418879056048, 'number': 809} | {'precision': 0.32575757575757575, 'recall': 0.36134453781512604, 'f1': 0.3426294820717131, 'number': 119} | {'precision': 0.7726872246696035, 'recall': 0.8234741784037559, 'f1': 0.7972727272727272, 'number': 1065} | 0.7274 | 0.7858 | 0.7554 | 0.8097 |
71
+ | 0.2788 | 13.0 | 130 | 0.6937 | {'precision': 0.7224669603524229, 'recall': 0.8108776266996292, 'f1': 0.7641234711706465, 'number': 809} | {'precision': 0.3023255813953488, 'recall': 0.3277310924369748, 'f1': 0.314516129032258, 'number': 119} | {'precision': 0.7724867724867724, 'recall': 0.8225352112676056, 'f1': 0.7967257844474761, 'number': 1065} | 0.7236 | 0.7883 | 0.7546 | 0.8099 |
72
+ | 0.2593 | 14.0 | 140 | 0.6981 | {'precision': 0.7278835386338186, 'recall': 0.8034610630407911, 'f1': 0.7638072855464161, 'number': 809} | {'precision': 0.29850746268656714, 'recall': 0.33613445378151263, 'f1': 0.31620553359683795, 'number': 119} | {'precision': 0.7715289982425307, 'recall': 0.8244131455399061, 'f1': 0.7970948706309579, 'number': 1065} | 0.7242 | 0.7868 | 0.7542 | 0.8110 |
73
+ | 0.2581 | 15.0 | 150 | 0.6985 | {'precision': 0.7292134831460674, 'recall': 0.8022249690976514, 'f1': 0.7639788110653325, 'number': 809} | {'precision': 0.2962962962962963, 'recall': 0.33613445378151263, 'f1': 0.31496062992125984, 'number': 119} | {'precision': 0.7711267605633803, 'recall': 0.8225352112676056, 'f1': 0.7960018173557474, 'number': 1065} | 0.7242 | 0.7852 | 0.7535 | 0.8108 |
74
+
75
+
76
+ ### Framework versions
77
+
78
+ - Transformers 4.41.2
79
+ - Pytorch 2.3.1+cu121
80
+ - Datasets 2.19.2
81
+ - Tokenizers 0.19.1
logs/events.out.tfevents.1718873323.HCIDC-SV-DMZ-ORC-NODE02.3919717.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:19f45d0b7a8e5834c6bc43ac19791454cc947ef1ecced5a4623fdbe1accfc769
3
- size 12085
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f64852081cffd323666aaa9fa0d839bfd0e909f73daff9da9da463714c1861b3
3
+ size 15988
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:94fc1f7e21fbcc578b6cb6f34e3504ca8a0c7fb63d7b60a7d22ffc5228cd8265
3
  size 450558212
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2deafbe07c01a1eaca0e7cdf62cfec24a4b4fe2b399102629a3fab9ad6edde25
3
  size 450558212
preprocessor_config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_valid_processor_keys": [
3
+ "images",
4
+ "do_resize",
5
+ "size",
6
+ "resample",
7
+ "apply_ocr",
8
+ "ocr_lang",
9
+ "tesseract_config",
10
+ "return_tensors",
11
+ "data_format",
12
+ "input_data_format"
13
+ ],
14
+ "apply_ocr": true,
15
+ "do_resize": true,
16
+ "image_processor_type": "LayoutLMv2ImageProcessor",
17
+ "ocr_lang": null,
18
+ "processor_class": "LayoutLMv2Processor",
19
+ "resample": 2,
20
+ "size": {
21
+ "height": 224,
22
+ "width": 224
23
+ },
24
+ "tesseract_config": ""
25
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "additional_special_tokens": [],
45
+ "apply_ocr": false,
46
+ "clean_up_tokenization_spaces": true,
47
+ "cls_token": "[CLS]",
48
+ "cls_token_box": [
49
+ 0,
50
+ 0,
51
+ 0,
52
+ 0
53
+ ],
54
+ "do_basic_tokenize": true,
55
+ "do_lower_case": true,
56
+ "mask_token": "[MASK]",
57
+ "model_max_length": 512,
58
+ "never_split": null,
59
+ "only_label_first_subword": true,
60
+ "pad_token": "[PAD]",
61
+ "pad_token_box": [
62
+ 0,
63
+ 0,
64
+ 0,
65
+ 0
66
+ ],
67
+ "pad_token_label": -100,
68
+ "processor_class": "LayoutLMv2Processor",
69
+ "sep_token": "[SEP]",
70
+ "sep_token_box": [
71
+ 1000,
72
+ 1000,
73
+ 1000,
74
+ 1000
75
+ ],
76
+ "strip_accents": null,
77
+ "tokenize_chinese_chars": true,
78
+ "tokenizer_class": "LayoutLMv2Tokenizer",
79
+ "unk_token": "[UNK]"
80
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff