File size: 2,094 Bytes
8e2053c
 
 
 
 
 
42ba26a
 
 
8e2053c
 
 
 
 
 
 
 
 
 
 
42ba26a
0b5fc2b
 
 
8e2053c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b5fc2b
42ba26a
 
 
 
 
0b5fc2b
 
 
 
 
 
 
 
 
 
42ba26a
8e2053c
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
---
library_name: transformers
license: mit
base_model: xlm-roberta-base
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: xlm-roberta-base-finetuned-emotion
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# xlm-roberta-base-finetuned-emotion

This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1856
- Accuracy: 0.9395
- F1: 0.9398

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1     |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.1374        | 1.0   | 250  | 0.1631          | 0.9335   | 0.9342 |
| 0.1038        | 2.0   | 500  | 0.1772          | 0.9335   | 0.9332 |
| 0.0883        | 3.0   | 750  | 0.1705          | 0.9375   | 0.9384 |
| 0.0788        | 4.0   | 1000 | 0.1524          | 0.9395   | 0.9392 |
| 0.0764        | 5.0   | 1250 | 0.1506          | 0.9375   | 0.9375 |
| 0.0661        | 6.0   | 1500 | 0.1856          | 0.9395   | 0.9398 |
| 0.0578        | 7.0   | 1750 | 0.1819          | 0.934    | 0.9338 |
| 0.0483        | 8.0   | 2000 | 0.1799          | 0.9345   | 0.9344 |
| 0.0417        | 9.0   | 2250 | 0.1854          | 0.9385   | 0.9386 |
| 0.0307        | 10.0  | 2500 | 0.1939          | 0.9375   | 0.9377 |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1