File size: 2,094 Bytes
8e2053c 42ba26a 8e2053c 42ba26a 0b5fc2b 8e2053c 0b5fc2b 42ba26a 0b5fc2b 42ba26a 8e2053c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
---
library_name: transformers
license: mit
base_model: xlm-roberta-base
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: xlm-roberta-base-finetuned-emotion
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-emotion
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1856
- Accuracy: 0.9395
- F1: 0.9398
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.1374 | 1.0 | 250 | 0.1631 | 0.9335 | 0.9342 |
| 0.1038 | 2.0 | 500 | 0.1772 | 0.9335 | 0.9332 |
| 0.0883 | 3.0 | 750 | 0.1705 | 0.9375 | 0.9384 |
| 0.0788 | 4.0 | 1000 | 0.1524 | 0.9395 | 0.9392 |
| 0.0764 | 5.0 | 1250 | 0.1506 | 0.9375 | 0.9375 |
| 0.0661 | 6.0 | 1500 | 0.1856 | 0.9395 | 0.9398 |
| 0.0578 | 7.0 | 1750 | 0.1819 | 0.934 | 0.9338 |
| 0.0483 | 8.0 | 2000 | 0.1799 | 0.9345 | 0.9344 |
| 0.0417 | 9.0 | 2250 | 0.1854 | 0.9385 | 0.9386 |
| 0.0307 | 10.0 | 2500 | 0.1939 | 0.9375 | 0.9377 |
### Framework versions
- Transformers 4.44.2
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1
|