HuggingSara commited on
Commit
4e273ea
·
verified ·
1 Parent(s): 17ee998

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +65 -0
README.md ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-nc-sa-4.0
3
+ language:
4
+ - en
5
+ metrics:
6
+ - accuracy
7
+ pipeline_tag: text-generation
8
+ tags:
9
+ - medical
10
+ ---
11
+ ## Model Card for BiMediX-Bilingual
12
+
13
+ ### Model Details
14
+ - **Name:** BiMediX
15
+ - **Version:** 1.0
16
+ - **Type:** Bilingual Medical Mixture of Experts Large Language Model (LLM)
17
+ - **Languages:** English
18
+ - **Model Architecture:** [Mixtral-8x7B-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1)
19
+ - **Training Data:** BiMed1.3M-English, a bilingual dataset with diverse medical interactions.
20
+
21
+ ### Intended Use
22
+ - **Primary Use:** Medical interactions in both English and Arabic.
23
+ - **Capabilities:** MCQA, closed QA and chats.
24
+
25
+ ## Getting Started
26
+
27
+ ```python
28
+ from transformers import AutoModelForCausalLM, AutoTokenizer
29
+ model_id = "BiMediX/BiMediX-Eng"
30
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
31
+ model = AutoModelForCausalLM.from_pretrained(model_id)
32
+ text = "Hello BiMediX! I've been experiencing increased tiredness in the past week."
33
+ inputs = tokenizer(text, return_tensors="pt")
34
+ outputs = model.generate(**inputs, max_new_tokens=500)
35
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
36
+ ```
37
+
38
+ ### Training Procedure
39
+ - **Dataset:** BiMed1.3M-English, million healthcare specialized tokens.
40
+ - **QLoRA Adaptation:** Implements a low-rank adaptation technique, incorporating learnable low-rank adapter weights into the experts and the routing network. This results in training about 4% of the original parameters.
41
+ - **Training Resources:** The model underwent training on approximately 288 million tokens from the BiMed1.3M-English corpus.
42
+
43
+ ### Model Performance
44
+ - **Benchmarks:** Demonstrates superior performance compared to baseline models in medical benchmarks. This enhancement is attributed to advanced training techniques and a comprehensive dataset, ensuring the model's adeptness in handling complex medical queries and providing accurate information in the healthcare domain.
45
+
46
+
47
+ | **Model** | **CKG** | **CBio** | **CMed** | **MedGen** | **ProMed** | **Ana** | **MedMCQA** | **MedQA** | **PubmedQA** | **AVG** |
48
+ |-----------------------|------------|-----------|-----------|-------------|-------------|---------|-------------|-----------|--------------|---------|
49
+ | PMC-LLaMA-13B | 63.0 | 59.7 | 52.6 | 70.0 | 64.3 | 61.5 | 50.5 | 47.2 | 75.6 | 60.5 |
50
+ | Med42-70B | 75.9 | 84.0 | 69.9 | 83.0 | 78.7 | 64.4 | 61.9 | 61.3 | 77.2 | 72.9 |
51
+ | Clinical Camel-70B | 69.8 | 79.2 | 67.0 | 69.0 | 71.3 | 62.2 | 47.0 | 53.4 | 74.3 | 65.9 |
52
+ | Meditron-70B | 72.3 | 82.5 | 62.8 | 77.8 | 77.9 | 62.7 | **65.1** | 60.7 | 80.0 | 71.3 |
53
+ | **BiMediX** | **78.9** | **86.1** | **68.2** | **85.0** | **80.5** | **74.1**| 62.7 | **62.8** | **80.2** | **75.4** |
54
+
55
+ ### Safety and Ethical Considerations
56
+ - **Potential issues**: hallucinations, toxicity, stereotypes.
57
+ - **Usage:** Research purposes only.
58
+
59
+ ### Accessibility
60
+ - **Availability:** [BiMediX GitHub Repository](https://github.com/mbzuai-oryx/BiMediX).
61
+ - arxiv.org/abs/2402.13253
62
+
63
+ ### Authors
64
+ Sara Pieri, Sahal Shaji Mullappilly, Fahad Shahbaz Khan, Rao Muhammad Anwer Salman Khan, Timothy Baldwin, Hisham Cholakkal
65
+ **Mohamed Bin Zayed University of Artificial Intelligence (MBZUAI)**