Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- my-first-hf-dl-lunar-lander-model.zip +3 -0
- my-first-hf-dl-lunar-lander-model/_stable_baselines3_version +1 -0
- my-first-hf-dl-lunar-lander-model/data +94 -0
- my-first-hf-dl-lunar-lander-model/policy.optimizer.pth +3 -0
- my-first-hf-dl-lunar-lander-model/policy.pth +3 -0
- my-first-hf-dl-lunar-lander-model/pytorch_variables.pth +3 -0
- my-first-hf-dl-lunar-lander-model/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 232.59 +/- 25.63
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fa71724bca0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa71724bd30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa71724bdc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa71724be50>", "_build": "<function ActorCriticPolicy._build at 0x7fa71724bee0>", "forward": "<function ActorCriticPolicy.forward at 0x7fa71724bf70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa71724f040>", "_predict": "<function ActorCriticPolicy._predict at 0x7fa71724f0d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa71724f160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa71724f1f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa71724f280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fa717248480>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671605457491482283, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIBhLr3DMVK6Q7RTOjMzXTLK/zi7G811uQAAgD8AAIA/ZjmnvOHKj7pR8JY7iazZNYmKIbuNKa+6AACAPwAAgD+asca99hgDuimlAzxUd2Q2eGm8u53iaDUAAIA/AACAPzPDpj3M2Ug/Ym7rPCH2Y77pCos9CyTgPQAAAAAAAAAAAAnJvIWT0rnqsXy8frb1NX7bqTnt0WK1AACAPwAAgD/mwMW9UoCiubqLGztQxuE2DGmfOZBON7oAAIA/AACAP4BArb24boy5BvKgO4CTpDXtBaK7yiHBugAAAAAAAIA/ZqPVvAwSHz8PnpO9nuFKvsmXj71IumE9AAAAAAAAAACAISw9SOmCuivSEzpxeGm2dMsOO1CdKbkAAIA/AACAPzN7lDuPtmW6tmrtOk8FRjZQRhM6Ks0IugAAgD8AAIA/mm23POFYmLqOMA06lcortkRB4LkRByO5AACAPwAAgD+zsWy9e46fupjDg7lenHS0vvoUuN7glzgAAIA/AACAPwCFJb4cuhO8OqBWus9QIbh6yns95UiEOQAAgD8AAIA/zax8Oxfk0z5sq429T2c2vlEhSb0SFyE8AAAAAAAAAAAma7o99sxgulJrnznPxoM04QWAus5fu7gAAAAAAACAP1VEvb5lqYg/mOXkvd0fOr6zPwO+HHqPPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIjuVd9YBrWkCUhpRSlIwBbJRN6AOMAXSUR0CTa58c+7lJdX2UKGgGaAloD0MIHuG04MWYZUCUhpRSlGgVTegDaBZHQJNvufQKKHh1fZQoaAZoCWgPQwjP29jsSHtcQJSGlFKUaBVN6ANoFkdAk2/qK1og3nV9lChoBmgJaA9DCAqDMo2m7GBAlIaUUpRoFU3oA2gWR0CTdLCTlkpadX2UKGgGaAloD0MIy0i9p3J1YkCUhpRSlGgVTegDaBZHQJN2i3F1jiJ1fZQoaAZoCWgPQwhEUaBP5I1kQJSGlFKUaBVN6ANoFkdAk3beBpYcN3V9lChoBmgJaA9DCNXQBmCDx2RAlIaUUpRoFU3oA2gWR0CTetw0waisdX2UKGgGaAloD0MISQ9Dq5MmWUCUhpRSlGgVTegDaBZHQJN7Co4uK4x1fZQoaAZoCWgPQwgWinQ/JyJlQJSGlFKUaBVN6ANoFkdAk336vq1PWXV9lChoBmgJaA9DCBEY6xuYKGdAlIaUUpRoFU3oA2gWR0CTg54KQaJidX2UKGgGaAloD0MIb59VZkoQYkCUhpRSlGgVTegDaBZHQJOHTgVGkN51fZQoaAZoCWgPQwj92Y8UkfVDQJSGlFKUaBVNFwFoFkdAk4x2gBcRlHV9lChoBmgJaA9DCHR7SWM0CWNAlIaUUpRoFU3oA2gWR0CTkRtBv73xdX2UKGgGaAloD0MIqd2vAvycYECUhpRSlGgVTegDaBZHQJOXxV+7UXp1fZQoaAZoCWgPQwh6HXHIhrhgQJSGlFKUaBVN6ANoFkdAk6vKk2xY73V9lChoBmgJaA9DCIv7j0yHKjlAlIaUUpRoFU0UAWgWR0CTs8g4wRGudX2UKGgGaAloD0MIBOeMKO35YECUhpRSlGgVTegDaBZHQJO1fBvaURp1fZQoaAZoCWgPQwj/lCpRdvJjQJSGlFKUaBVN6ANoFkdAk7nLMC9ytHV9lChoBmgJaA9DCP0v16KFPmJAlIaUUpRoFU3oA2gWR0CTwXEWqLjxdX2UKGgGaAloD0MI9dcrLDgVYUCUhpRSlGgVTegDaBZHQJPF8Orhisp1fZQoaAZoCWgPQwgkCi3rfudjQJSGlFKUaBVN6ANoFkdAk8YoIfKZD3V9lChoBmgJaA9DCIDVkSMd22FAlIaUUpRoFU3oA2gWR0CTy6X1anrIdX2UKGgGaAloD0MIVHB4QcSJYUCUhpRSlGgVTegDaBZHQJPNtt52Qnx1fZQoaAZoCWgPQwhNSkG3F/9gQJSGlFKUaBVN6ANoFkdAk84HDNyHVXV9lChoBmgJaA9DCFTGv8+4QmJAlIaUUpRoFU3oA2gWR0CT0hbmEGqxdX2UKGgGaAloD0MILzArFGk3YkCUhpRSlGgVTegDaBZHQJPVaKP4mC11fZQoaAZoCWgPQwg57pQO1j8zQJSGlFKUaBVL+GgWR0CT1exzq8lHdX2UKGgGaAloD0MICOV9HM2JIkCUhpRSlGgVTQUBaBZHQJPWgX7+DOF1fZQoaAZoCWgPQwjgoSjQJ7tiQJSGlFKUaBVN6ANoFkdAk9sLqUu+RHV9lChoBmgJaA9DCCEdHsL4XmJAlIaUUpRoFU3oA2gWR0CT3ijOcDr7dX2UKGgGaAloD0MIkIKnkCsDYECUhpRSlGgVTegDaBZHQJPmeaEzwc51fZQoaAZoCWgPQwgXLNUFvOwyQJSGlFKUaBVNLAFoFkdAk+fyIP9UCXV9lChoBmgJaA9DCCtM32sIImVAlIaUUpRoFU3oA2gWR0CT6/05EMLGdX2UKGgGaAloD0MIADeLFwu7YkCUhpRSlGgVTegDaBZHQJPtPMgU1yh1fZQoaAZoCWgPQwi2SNqNvr5jQJSGlFKUaBVN6ANoFkdAlAeT06HTJHV9lChoBmgJaA9DCFtdTgmINFxAlIaUUpRoFU3oA2gWR0CUCQph4MWodX2UKGgGaAloD0MIJ6PKMO78YECUhpRSlGgVTegDaBZHQJQM0ZNwiq11fZQoaAZoCWgPQwhn0xHAzbphQJSGlFKUaBVN6ANoFkdAlBRuM6zVt3V9lChoBmgJaA9DCNyb3zBRrmJAlIaUUpRoFU3oA2gWR0CUIkT5O8CgdX2UKGgGaAloD0MIbLQc6CG6ZkCUhpRSlGgVTegDaBZHQJQkbarWAgB1fZQoaAZoCWgPQwjE7juGxyZlQJSGlFKUaBVN6ANoFkdAlCS77fpD/nV9lChoBmgJaA9DCMJOsWqQ0WJAlIaUUpRoFU3oA2gWR0CUKPq7yxzJdX2UKGgGaAloD0MIUhA8vr1fYkCUhpRSlGgVTegDaBZHQJQsZ52Qnx91fZQoaAZoCWgPQwgudCUC1VBbQJSGlFKUaBVN6ANoFkdAlC2A+Y+jd3V9lChoBmgJaA9DCAaCABm6nGRAlIaUUpRoFU3oA2gWR0CUMlxvvSc9dX2UKGgGaAloD0MI+aI9Xkj5ZUCUhpRSlGgVTegDaBZHQJQ1kkyDZlF1fZQoaAZoCWgPQwhIMqt3uAtZQJSGlFKUaBVN6ANoFkdAlD4szdk8R3V9lChoBmgJaA9DCPuytFPzNGNAlIaUUpRoFU3oA2gWR0CUP8GQ0XP7dX2UKGgGaAloD0MI+MQ6VT5AYkCUhpRSlGgVTegDaBZHQJRD3655JK91fZQoaAZoCWgPQwi63GCow69hQJSGlFKUaBVN6ANoFkdAlEUfWQOnVHV9lChoBmgJaA9DCHAJwD+lflxAlIaUUpRoFU3oA2gWR0CUXyK508vFdX2UKGgGaAloD0MIvaYHBSV1Y0CUhpRSlGgVTegDaBZHQJRgrzND+it1fZQoaAZoCWgPQwh9PV+z3DxkQJSGlFKUaBVN6ANoFkdAlGSlXFLnLnV9lChoBmgJaA9DCMrFGFjHQ2RAlIaUUpRoFU3oA2gWR0CUbBUBnzxxdX2UKGgGaAloD0MI3GYqxKNgYECUhpRSlGgVTegDaBZHQJR17kuHvc91fZQoaAZoCWgPQwgp0CfyJFBiQJSGlFKUaBVN6ANoFkdAlHgW/N7jUHV9lChoBmgJaA9DCDGale3DqWBAlIaUUpRoFU3oA2gWR0CUeHc+JP69dX2UKGgGaAloD0MImE7rNqhVXUCUhpRSlGgVTegDaBZHQJR9GivgWJt1fZQoaAZoCWgPQwg6zJcX4A1lQJSGlFKUaBVN6ANoFkdAlICgQYk3THV9lChoBmgJaA9DCPsGJjcKPGJAlIaUUpRoFU3oA2gWR0CUgcF6Rhc8dX2UKGgGaAloD0MICYm0jb92Y0CUhpRSlGgVTegDaBZHQJSGIsI3R5V1fZQoaAZoCWgPQwiR8/4/TrxlQJSGlFKUaBVN6ANoFkdAlIkdkJ8fFXV9lChoBmgJaA9DCCttcY3Pt1hAlIaUUpRoFU3oA2gWR0CUkS+Zw4sFdX2UKGgGaAloD0MIKbNBJhlmY0CUhpRSlGgVTegDaBZHQJSSpmI0qH51fZQoaAZoCWgPQwhN9zqpLxspQJSGlFKUaBVNUQFoFkdAlJWQGbCrLnV9lChoBmgJaA9DCNeJy/EKg2VAlIaUUpRoFU3oA2gWR0CUlntr9EThdX2UKGgGaAloD0MIPL8oQX/sYECUhpRSlGgVTegDaBZHQJSXkpe/pMZ1fZQoaAZoCWgPQwjaWfROBaNhQJSGlFKUaBVN6ANoFkdAlLDT0pVjqnV9lChoBmgJaA9DCEd1OpD1GFtAlIaUUpRoFU3oA2gWR0CUsiL2YfGNdX2UKGgGaAloD0MI3q6XpojmYkCUhpRSlGgVTegDaBZHQJS1lrcj7hx1fZQoaAZoCWgPQwgP7WMFvyNFQJSGlFKUaBVNGAFoFkdAlLmWXkYGdXV9lChoBmgJaA9DCO+oMSHmRl1AlIaUUpRoFU3oA2gWR0CUvDrdFfAsdX2UKGgGaAloD0MIO1YpPdMjQ0CUhpRSlGgVTRUBaBZHQJTCzOxB3Rp1fZQoaAZoCWgPQwhKRWPt70xlQJSGlFKUaBVN6ANoFkdAlMVXscABDHV9lChoBmgJaA9DCIy9F180LGVAlIaUUpRoFU3oA2gWR0CUx09jgAIZdX2UKGgGaAloD0MIibX4FABWY0CUhpRSlGgVTegDaBZHQJTHm9YfW+Z1fZQoaAZoCWgPQwiMu0G0Vs5gQJSGlFKUaBVN6ANoFkdAlMu6xX4j8nV9lChoBmgJaA9DCLAD54woHl9AlIaUUpRoFU3oA2gWR0CUzy0nw5NodX2UKGgGaAloD0MIuMg9Xd03X0CUhpRSlGgVTegDaBZHQJTVg6YE4ed1fZQoaAZoCWgPQwg0SMFTyLtkQJSGlFKUaBVN6ANoFkdAlNlTkQwsXnV9lChoBmgJaA9DCEK1wYnoUWBAlIaUUpRoFU3oA2gWR0CU4yRjSXt0dX2UKGgGaAloD0MIt+9Rf70QYECUhpRSlGgVTegDaBZHQJTkuBWgezV1fZQoaAZoCWgPQwhkPbX6aihiQJSGlFKUaBVN6ANoFkdAlOf0dilSCXV9lChoBmgJaA9DCCob1lQWHVxAlIaUUpRoFU3oA2gWR0CU6j3mmtQsdX2UKGgGaAloD0MIstgmFY2AY0CUhpRSlGgVTegDaBZHQJULX4EfT1F1fZQoaAZoCWgPQwh88UV7PNlhQJSGlFKUaBVN6ANoFkdAlRJz2Bas63V9lChoBmgJaA9DCFSLiGLy61lAlIaUUpRoFU3oA2gWR0CVF4F5OafBdX2UKGgGaAloD0MI8ZwtIDRmZUCUhpRSlGgVTegDaBZHQJUbCw4bS7Z1fZQoaAZoCWgPQwiWQErsWl9gQJSGlFKUaBVN6ANoFkdAlSNxbfP5YnV9lChoBmgJaA9DCIoAp3fx7mJAlIaUUpRoFU3oA2gWR0CVKGkona37dX2UKGgGaAloD0MIT7LV5ZQDXkCUhpRSlGgVTegDaBZHQJUq/DTBqKx1fZQoaAZoCWgPQwh6UFCKVhteQJSGlFKUaBVN6ANoFkdAlStTqfOD8XV9lChoBmgJaA9DCKyNsRNelGBAlIaUUpRoFU3oA2gWR0CVMHHp8neBdX2UKGgGaAloD0MILekoBzPLYkCUhpRSlGgVTegDaBZHQJU1V+az/qB1fZQoaAZoCWgPQwhoWmJltFZjQJSGlFKUaBVN6ANoFkdAlTzx0MgEEHV9lChoBmgJaA9DCAd6qG3DlF5AlIaUUpRoFU3oA2gWR0CVQeasp5NXdX2UKGgGaAloD0MID0QWaeL8YUCUhpRSlGgVTegDaBZHQJVQWXu3MIN1fZQoaAZoCWgPQwjuzW+YaEJgQJSGlFKUaBVN6ANoFkdAlVHyPuG9H3V9lChoBmgJaA9DCAtET8qkg1pAlIaUUpRoFU3oA2gWR0CVVUfReC04dX2UKGgGaAloD0MIgT/8/HfOYUCUhpRSlGgVTegDaBZHQJVYYdCE6DJ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
my-first-hf-dl-lunar-lander-model.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2ac8d00a79c8d84c45acd73e9a87c909c4eb52e02a2db4a01fba010a3f80ca76
|
3 |
+
size 147218
|
my-first-hf-dl-lunar-lander-model/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.2
|
my-first-hf-dl-lunar-lander-model/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fa71724bca0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa71724bd30>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa71724bdc0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa71724be50>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fa71724bee0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fa71724bf70>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa71724f040>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fa71724f0d0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa71724f160>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa71724f1f0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa71724f280>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fa717248480>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 1015808,
|
46 |
+
"_total_timesteps": 1000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1671605457491482283,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIBhLr3DMVK6Q7RTOjMzXTLK/zi7G811uQAAgD8AAIA/ZjmnvOHKj7pR8JY7iazZNYmKIbuNKa+6AACAPwAAgD+asca99hgDuimlAzxUd2Q2eGm8u53iaDUAAIA/AACAPzPDpj3M2Ug/Ym7rPCH2Y77pCos9CyTgPQAAAAAAAAAAAAnJvIWT0rnqsXy8frb1NX7bqTnt0WK1AACAPwAAgD/mwMW9UoCiubqLGztQxuE2DGmfOZBON7oAAIA/AACAP4BArb24boy5BvKgO4CTpDXtBaK7yiHBugAAAAAAAIA/ZqPVvAwSHz8PnpO9nuFKvsmXj71IumE9AAAAAAAAAACAISw9SOmCuivSEzpxeGm2dMsOO1CdKbkAAIA/AACAPzN7lDuPtmW6tmrtOk8FRjZQRhM6Ks0IugAAgD8AAIA/mm23POFYmLqOMA06lcortkRB4LkRByO5AACAPwAAgD+zsWy9e46fupjDg7lenHS0vvoUuN7glzgAAIA/AACAPwCFJb4cuhO8OqBWus9QIbh6yns95UiEOQAAgD8AAIA/zax8Oxfk0z5sq429T2c2vlEhSb0SFyE8AAAAAAAAAAAma7o99sxgulJrnznPxoM04QWAus5fu7gAAAAAAACAP1VEvb5lqYg/mOXkvd0fOr6zPwO+HHqPPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIjuVd9YBrWkCUhpRSlIwBbJRN6AOMAXSUR0CTa58c+7lJdX2UKGgGaAloD0MIHuG04MWYZUCUhpRSlGgVTegDaBZHQJNvufQKKHh1fZQoaAZoCWgPQwjP29jsSHtcQJSGlFKUaBVN6ANoFkdAk2/qK1og3nV9lChoBmgJaA9DCAqDMo2m7GBAlIaUUpRoFU3oA2gWR0CTdLCTlkpadX2UKGgGaAloD0MIy0i9p3J1YkCUhpRSlGgVTegDaBZHQJN2i3F1jiJ1fZQoaAZoCWgPQwhEUaBP5I1kQJSGlFKUaBVN6ANoFkdAk3beBpYcN3V9lChoBmgJaA9DCNXQBmCDx2RAlIaUUpRoFU3oA2gWR0CTetw0waisdX2UKGgGaAloD0MISQ9Dq5MmWUCUhpRSlGgVTegDaBZHQJN7Co4uK4x1fZQoaAZoCWgPQwgWinQ/JyJlQJSGlFKUaBVN6ANoFkdAk336vq1PWXV9lChoBmgJaA9DCBEY6xuYKGdAlIaUUpRoFU3oA2gWR0CTg54KQaJidX2UKGgGaAloD0MIb59VZkoQYkCUhpRSlGgVTegDaBZHQJOHTgVGkN51fZQoaAZoCWgPQwj92Y8UkfVDQJSGlFKUaBVNFwFoFkdAk4x2gBcRlHV9lChoBmgJaA9DCHR7SWM0CWNAlIaUUpRoFU3oA2gWR0CTkRtBv73xdX2UKGgGaAloD0MIqd2vAvycYECUhpRSlGgVTegDaBZHQJOXxV+7UXp1fZQoaAZoCWgPQwh6HXHIhrhgQJSGlFKUaBVN6ANoFkdAk6vKk2xY73V9lChoBmgJaA9DCIv7j0yHKjlAlIaUUpRoFU0UAWgWR0CTs8g4wRGudX2UKGgGaAloD0MIBOeMKO35YECUhpRSlGgVTegDaBZHQJO1fBvaURp1fZQoaAZoCWgPQwj/lCpRdvJjQJSGlFKUaBVN6ANoFkdAk7nLMC9ytHV9lChoBmgJaA9DCP0v16KFPmJAlIaUUpRoFU3oA2gWR0CTwXEWqLjxdX2UKGgGaAloD0MI9dcrLDgVYUCUhpRSlGgVTegDaBZHQJPF8Orhisp1fZQoaAZoCWgPQwgkCi3rfudjQJSGlFKUaBVN6ANoFkdAk8YoIfKZD3V9lChoBmgJaA9DCIDVkSMd22FAlIaUUpRoFU3oA2gWR0CTy6X1anrIdX2UKGgGaAloD0MIVHB4QcSJYUCUhpRSlGgVTegDaBZHQJPNtt52Qnx1fZQoaAZoCWgPQwhNSkG3F/9gQJSGlFKUaBVN6ANoFkdAk84HDNyHVXV9lChoBmgJaA9DCFTGv8+4QmJAlIaUUpRoFU3oA2gWR0CT0hbmEGqxdX2UKGgGaAloD0MILzArFGk3YkCUhpRSlGgVTegDaBZHQJPVaKP4mC11fZQoaAZoCWgPQwg57pQO1j8zQJSGlFKUaBVL+GgWR0CT1exzq8lHdX2UKGgGaAloD0MICOV9HM2JIkCUhpRSlGgVTQUBaBZHQJPWgX7+DOF1fZQoaAZoCWgPQwjgoSjQJ7tiQJSGlFKUaBVN6ANoFkdAk9sLqUu+RHV9lChoBmgJaA9DCCEdHsL4XmJAlIaUUpRoFU3oA2gWR0CT3ijOcDr7dX2UKGgGaAloD0MIkIKnkCsDYECUhpRSlGgVTegDaBZHQJPmeaEzwc51fZQoaAZoCWgPQwgXLNUFvOwyQJSGlFKUaBVNLAFoFkdAk+fyIP9UCXV9lChoBmgJaA9DCCtM32sIImVAlIaUUpRoFU3oA2gWR0CT6/05EMLGdX2UKGgGaAloD0MIADeLFwu7YkCUhpRSlGgVTegDaBZHQJPtPMgU1yh1fZQoaAZoCWgPQwi2SNqNvr5jQJSGlFKUaBVN6ANoFkdAlAeT06HTJHV9lChoBmgJaA9DCFtdTgmINFxAlIaUUpRoFU3oA2gWR0CUCQph4MWodX2UKGgGaAloD0MIJ6PKMO78YECUhpRSlGgVTegDaBZHQJQM0ZNwiq11fZQoaAZoCWgPQwhn0xHAzbphQJSGlFKUaBVN6ANoFkdAlBRuM6zVt3V9lChoBmgJaA9DCNyb3zBRrmJAlIaUUpRoFU3oA2gWR0CUIkT5O8CgdX2UKGgGaAloD0MIbLQc6CG6ZkCUhpRSlGgVTegDaBZHQJQkbarWAgB1fZQoaAZoCWgPQwjE7juGxyZlQJSGlFKUaBVN6ANoFkdAlCS77fpD/nV9lChoBmgJaA9DCMJOsWqQ0WJAlIaUUpRoFU3oA2gWR0CUKPq7yxzJdX2UKGgGaAloD0MIUhA8vr1fYkCUhpRSlGgVTegDaBZHQJQsZ52Qnx91fZQoaAZoCWgPQwgudCUC1VBbQJSGlFKUaBVN6ANoFkdAlC2A+Y+jd3V9lChoBmgJaA9DCAaCABm6nGRAlIaUUpRoFU3oA2gWR0CUMlxvvSc9dX2UKGgGaAloD0MI+aI9Xkj5ZUCUhpRSlGgVTegDaBZHQJQ1kkyDZlF1fZQoaAZoCWgPQwhIMqt3uAtZQJSGlFKUaBVN6ANoFkdAlD4szdk8R3V9lChoBmgJaA9DCPuytFPzNGNAlIaUUpRoFU3oA2gWR0CUP8GQ0XP7dX2UKGgGaAloD0MI+MQ6VT5AYkCUhpRSlGgVTegDaBZHQJRD3655JK91fZQoaAZoCWgPQwi63GCow69hQJSGlFKUaBVN6ANoFkdAlEUfWQOnVHV9lChoBmgJaA9DCHAJwD+lflxAlIaUUpRoFU3oA2gWR0CUXyK508vFdX2UKGgGaAloD0MIvaYHBSV1Y0CUhpRSlGgVTegDaBZHQJRgrzND+it1fZQoaAZoCWgPQwh9PV+z3DxkQJSGlFKUaBVN6ANoFkdAlGSlXFLnLnV9lChoBmgJaA9DCMrFGFjHQ2RAlIaUUpRoFU3oA2gWR0CUbBUBnzxxdX2UKGgGaAloD0MI3GYqxKNgYECUhpRSlGgVTegDaBZHQJR17kuHvc91fZQoaAZoCWgPQwgp0CfyJFBiQJSGlFKUaBVN6ANoFkdAlHgW/N7jUHV9lChoBmgJaA9DCDGale3DqWBAlIaUUpRoFU3oA2gWR0CUeHc+JP69dX2UKGgGaAloD0MImE7rNqhVXUCUhpRSlGgVTegDaBZHQJR9GivgWJt1fZQoaAZoCWgPQwg6zJcX4A1lQJSGlFKUaBVN6ANoFkdAlICgQYk3THV9lChoBmgJaA9DCPsGJjcKPGJAlIaUUpRoFU3oA2gWR0CUgcF6Rhc8dX2UKGgGaAloD0MICYm0jb92Y0CUhpRSlGgVTegDaBZHQJSGIsI3R5V1fZQoaAZoCWgPQwiR8/4/TrxlQJSGlFKUaBVN6ANoFkdAlIkdkJ8fFXV9lChoBmgJaA9DCCttcY3Pt1hAlIaUUpRoFU3oA2gWR0CUkS+Zw4sFdX2UKGgGaAloD0MIKbNBJhlmY0CUhpRSlGgVTegDaBZHQJSSpmI0qH51fZQoaAZoCWgPQwhN9zqpLxspQJSGlFKUaBVNUQFoFkdAlJWQGbCrLnV9lChoBmgJaA9DCNeJy/EKg2VAlIaUUpRoFU3oA2gWR0CUlntr9EThdX2UKGgGaAloD0MIPL8oQX/sYECUhpRSlGgVTegDaBZHQJSXkpe/pMZ1fZQoaAZoCWgPQwjaWfROBaNhQJSGlFKUaBVN6ANoFkdAlLDT0pVjqnV9lChoBmgJaA9DCEd1OpD1GFtAlIaUUpRoFU3oA2gWR0CUsiL2YfGNdX2UKGgGaAloD0MI3q6XpojmYkCUhpRSlGgVTegDaBZHQJS1lrcj7hx1fZQoaAZoCWgPQwgP7WMFvyNFQJSGlFKUaBVNGAFoFkdAlLmWXkYGdXV9lChoBmgJaA9DCO+oMSHmRl1AlIaUUpRoFU3oA2gWR0CUvDrdFfAsdX2UKGgGaAloD0MIO1YpPdMjQ0CUhpRSlGgVTRUBaBZHQJTCzOxB3Rp1fZQoaAZoCWgPQwhKRWPt70xlQJSGlFKUaBVN6ANoFkdAlMVXscABDHV9lChoBmgJaA9DCIy9F180LGVAlIaUUpRoFU3oA2gWR0CUx09jgAIZdX2UKGgGaAloD0MIibX4FABWY0CUhpRSlGgVTegDaBZHQJTHm9YfW+Z1fZQoaAZoCWgPQwiMu0G0Vs5gQJSGlFKUaBVN6ANoFkdAlMu6xX4j8nV9lChoBmgJaA9DCLAD54woHl9AlIaUUpRoFU3oA2gWR0CUzy0nw5NodX2UKGgGaAloD0MIuMg9Xd03X0CUhpRSlGgVTegDaBZHQJTVg6YE4ed1fZQoaAZoCWgPQwg0SMFTyLtkQJSGlFKUaBVN6ANoFkdAlNlTkQwsXnV9lChoBmgJaA9DCEK1wYnoUWBAlIaUUpRoFU3oA2gWR0CU4yRjSXt0dX2UKGgGaAloD0MIt+9Rf70QYECUhpRSlGgVTegDaBZHQJTkuBWgezV1fZQoaAZoCWgPQwhkPbX6aihiQJSGlFKUaBVN6ANoFkdAlOf0dilSCXV9lChoBmgJaA9DCCob1lQWHVxAlIaUUpRoFU3oA2gWR0CU6j3mmtQsdX2UKGgGaAloD0MIstgmFY2AY0CUhpRSlGgVTegDaBZHQJULX4EfT1F1fZQoaAZoCWgPQwh88UV7PNlhQJSGlFKUaBVN6ANoFkdAlRJz2Bas63V9lChoBmgJaA9DCFSLiGLy61lAlIaUUpRoFU3oA2gWR0CVF4F5OafBdX2UKGgGaAloD0MI8ZwtIDRmZUCUhpRSlGgVTegDaBZHQJUbCw4bS7Z1fZQoaAZoCWgPQwiWQErsWl9gQJSGlFKUaBVN6ANoFkdAlSNxbfP5YnV9lChoBmgJaA9DCIoAp3fx7mJAlIaUUpRoFU3oA2gWR0CVKGkona37dX2UKGgGaAloD0MIT7LV5ZQDXkCUhpRSlGgVTegDaBZHQJUq/DTBqKx1fZQoaAZoCWgPQwh6UFCKVhteQJSGlFKUaBVN6ANoFkdAlStTqfOD8XV9lChoBmgJaA9DCKyNsRNelGBAlIaUUpRoFU3oA2gWR0CVMHHp8neBdX2UKGgGaAloD0MILekoBzPLYkCUhpRSlGgVTegDaBZHQJU1V+az/qB1fZQoaAZoCWgPQwhoWmJltFZjQJSGlFKUaBVN6ANoFkdAlTzx0MgEEHV9lChoBmgJaA9DCAd6qG3DlF5AlIaUUpRoFU3oA2gWR0CVQeasp5NXdX2UKGgGaAloD0MID0QWaeL8YUCUhpRSlGgVTegDaBZHQJVQWXu3MIN1fZQoaAZoCWgPQwjuzW+YaEJgQJSGlFKUaBVN6ANoFkdAlVHyPuG9H3V9lChoBmgJaA9DCAtET8qkg1pAlIaUUpRoFU3oA2gWR0CVVUfReC04dX2UKGgGaAloD0MIgT/8/HfOYUCUhpRSlGgVTegDaBZHQJVYYdCE6DJ1ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 248,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
my-first-hf-dl-lunar-lander-model/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4d7d63711b327d668a370e9fc73fb64c60099d8c7aafba353f5205eaea21a911
|
3 |
+
size 87929
|
my-first-hf-dl-lunar-lander-model/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ea01f5ca4283b39844d26a5e4e83eab66c3d7cae3b6c44af3321ec30cd84c9df
|
3 |
+
size 43201
|
my-first-hf-dl-lunar-lander-model/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
my-first-hf-dl-lunar-lander-model/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
|
2 |
+
Python: 3.8.16
|
3 |
+
Stable-Baselines3: 1.6.2
|
4 |
+
PyTorch: 1.13.0+cu116
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (257 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 232.59314138519744, "std_reward": 25.629105105207085, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-21T07:14:28.479475"}
|