File size: 2,448 Bytes
adfbc61
 
 
 
 
02d68b0
 
adfbc61
 
 
 
 
 
 
 
 
 
 
02d68b0
 
 
 
 
 
 
adfbc61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02d68b0
adfbc61
 
 
02d68b0
 
 
 
 
 
 
 
 
 
 
 
adfbc61
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
---
license: apache-2.0
base_model: t5-small
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: t5-small-finetuned-xsum
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# t5-small-finetuned-xsum

This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4626
- Rouge1: 10.9564
- Rouge2: 4.685
- Rougel: 10.3752
- Rougelsum: 10.39
- Gen Len: 15.9259

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1  | Rouge2 | Rougel  | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:|
| No log        | 1.0   | 3    | 2.0757          | 5.4388  | 1.552  | 5.2972  | 5.3409    | 16.6667 |
| No log        | 2.0   | 6    | 1.9515          | 7.8036  | 3.5979 | 7.7847  | 7.8498    | 16.6667 |
| No log        | 3.0   | 9    | 1.8397          | 7.8036  | 3.5979 | 7.7847  | 7.8498    | 16.8148 |
| No log        | 4.0   | 12   | 1.7541          | 9.1266  | 4.3563 | 9.1926  | 9.2266    | 16.8148 |
| No log        | 5.0   | 15   | 1.6738          | 9.2104  | 4.3563 | 9.3105  | 9.3533    | 16.5556 |
| No log        | 6.0   | 18   | 1.5897          | 9.6908  | 4.3563 | 9.8162  | 9.8658    | 16.5185 |
| No log        | 7.0   | 21   | 1.5435          | 9.5442  | 3.8683 | 9.6336  | 9.5258    | 16.7037 |
| No log        | 8.0   | 24   | 1.5038          | 10.7654 | 4.4381 | 10.1637 | 10.1979   | 16.7037 |
| No log        | 9.0   | 27   | 1.4776          | 10.7654 | 4.4381 | 10.1637 | 10.1979   | 16.1481 |
| No log        | 10.0  | 30   | 1.4626          | 10.9564 | 4.685  | 10.3752 | 10.39     | 15.9259 |


### Framework versions

- Transformers 4.32.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3