File size: 15,628 Bytes
7a1271e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 |
---
base_model: sentence-transformers/use-cmlm-multilingual
datasets: []
language: []
library_name: sentence-transformers
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:6235
- loss:MegaBatchMarginLoss
widget:
- source_sentence: واسأل من أرسلنا من قبلك من رسلنا أجعلنا من دون الرحمن آلهة يعبدون
sentences:
- وجعلني مباركا أين ما كنت وأوصاني بالصلاة والزكاة ما دمت حيا
- فيومئذ وقعت الواقعة
- ولقد أرسلنا موسى بآياتنا إلى فرعون وملئه فقال إني رسول رب العالمين
- source_sentence: ولن تستطيعوا أن تعدلوا بين النساء ولو حرصتم فلا تميلوا كل الميل
فتذروها كالمعلقة وإن تصلحوا وتتقوا فإن الله كان غفورا رحيما
sentences:
- وهو الذي مرج البحرين هذا عذب فرات وهذا ملح أجاج وجعل بينهما برزخا وحجرا محجورا
- قل اللهم مالك الملك تؤتي الملك من تشاء وتنزع الملك ممن تشاء وتعز من تشاء وتذل
من تشاء بيدك الخير إنك على كل شيء قدير
- وإن يتفرقا يغن الله كلا من سعته وكان الله واسعا حكيما
- source_sentence: قالوا نريد أن نأكل منها وتطمئن قلوبنا ونعلم أن قد صدقتنا ونكون
عليها من الشاهدين
sentences:
- قال عيسى ابن مريم اللهم ربنا أنزل علينا مائدة من السماء تكون لنا عيدا لأولنا وآخرنا
وآية منك وارزقنا وأنت خير الرازقين
- ليعذب الله المنافقين والمنافقات والمشركين والمشركات ويتوب الله على المؤمنين والمؤمنات
وكان الله غفورا رحيما
- فقلت استغفروا ربكم إنه كان غفارا
- source_sentence: ولا تحسبن الذين قتلوا في سبيل الله أمواتا بل أحياء عند ربهم يرزقون
sentences:
- بل كذبوا بالحق لما جاءهم فهم في أمر مريج
- قد خسر الذين كذبوا بلقاء الله حتى إذا جاءتهم الساعة بغتة قالوا يا حسرتنا على ما
فرطنا فيها وهم يحملون أوزارهم على ظهورهم ألا ساء ما يزرون
- فرحين بما آتاهم الله من فضله ويستبشرون بالذين لم يلحقوا بهم من خلفهم ألا خوف عليهم
ولا هم يحزنون
- source_sentence: وإذ واعدنا موسى أربعين ليلة ثم اتخذتم العجل من بعده وأنتم ظالمون
sentences:
- ثم عفونا عنكم من بعد ذلك لعلكم تشكرون
- فاتقوا الله وأطيعون
- نحن أعلم بما يقولون وما أنت عليهم بجبار فذكر بالقرآن من يخاف وعيد
---
# SentenceTransformer based on sentence-transformers/use-cmlm-multilingual
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/use-cmlm-multilingual](https://huggingface.co/sentence-transformers/use-cmlm-multilingual). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/use-cmlm-multilingual](https://huggingface.co/sentence-transformers/use-cmlm-multilingual) <!-- at revision 6f8ff6583c371cbc4d6d3b93a5e37a888fd54574 -->
- **Maximum Sequence Length:** 256 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Bofandra/fine-tuning-use-cmlm-multilingual-quran")
# Run inference
sentences = [
'وإذ واعدنا موسى أربعين ليلة ثم اتخذتم العجل من بعده وأنتم ظالمون',
'ثم عفونا عنكم من بعد ذلك لعلكم تشكرون',
'نحن أعلم بما يقولون وما أنت عليهم بجبار فذكر بالقرآن من يخاف وعيد',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 6,235 training samples
* Columns: <code>sentence_0</code> and <code>sentence_1</code>
* Approximate statistics based on the first 1000 samples:
| | sentence_0 | sentence_1 |
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 4 tokens</li><li>mean: 24.26 tokens</li><li>max: 122 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 25.14 tokens</li><li>max: 130 tokens</li></ul> |
* Samples:
| sentence_0 | sentence_1 |
|:-------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>يوم يسحبون في النار على وجوههم ذوقوا مس سقر</code> | <code>إنا كل شيء خلقناه بقدر</code> |
| <code>فإذا نقر في الناقور</code> | <code>فذلك يومئذ يوم عسير</code> |
| <code>في الدنيا والآخرة ويسألونك عن اليتامى قل إصلاح لهم خير وإن تخالطوهم فإخوانكم والله يعلم المفسد من المصلح ولو شاء الله لأعنتكم إن الله عزيز حكيم</code> | <code>ولا تنكحوا المشركات حتى يؤمن ولأمة مؤمنة خير من مشركة ولو أعجبتكم ولا تنكحوا المشركين حتى يؤمنوا ولعبد مؤمن خير من مشرك ولو أعجبكم أولئك يدعون إلى النار والله يدعو إلى الجنة والمغفرة بإذنه ويبين آياته للناس لعلهم يتذكرون</code> |
* Loss: [<code>MegaBatchMarginLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#megabatchmarginloss)
### Training Hyperparameters
#### Non-Default Hyperparameters
- `per_device_train_batch_size`: 4
- `per_device_eval_batch_size`: 4
- `num_train_epochs`: 1
- `multi_dataset_batch_sampler`: round_robin
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: no
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 4
- `per_device_eval_batch_size`: 4
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: round_robin
</details>
### Training Logs
| Epoch | Step | Training Loss |
|:------:|:----:|:-------------:|
| 0.3207 | 500 | 0.5052 |
| 0.6414 | 1000 | 0.4827 |
| 0.9622 | 1500 | 0.466 |
### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.3.0+cu121
- Accelerate: 0.31.0
- Datasets: 2.20.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MegaBatchMarginLoss
```bibtex
@inproceedings{wieting-gimpel-2018-paranmt,
title = "{P}ara{NMT}-50{M}: Pushing the Limits of Paraphrastic Sentence Embeddings with Millions of Machine Translations",
author = "Wieting, John and Gimpel, Kevin",
editor = "Gurevych, Iryna and Miyao, Yusuke",
booktitle = "Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2018",
address = "Melbourne, Australia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P18-1042",
doi = "10.18653/v1/P18-1042",
pages = "451--462",
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |