--- license: cc-by-nc-4.0 base_model: facebook/mms-1b-all tags: - generated_from_trainer datasets: - audiofolder metrics: - wer model-index: - name: wav2vec2-large-mms-1b-all-lingala-ojpl-4 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: audiofolder type: audiofolder config: default split: train args: default metrics: - name: Wer type: wer value: 0.2868821999256782 --- # wav2vec2-large-mms-1b-all-lingala-ojpl-4 This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) on the audiofolder dataset. It achieves the following results on the evaluation set: - Loss: 0.7849 - Wer: 0.2869 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.5152 | 0.54 | 100 | 0.9315 | 0.3430 | | 0.4837 | 1.08 | 200 | 0.9377 | 0.3133 | | 0.5943 | 1.61 | 300 | 0.8318 | 0.3177 | | 0.6232 | 2.15 | 400 | 0.7491 | 0.3107 | | 0.5186 | 2.69 | 500 | 0.7888 | 0.2899 | | 0.6024 | 3.23 | 600 | 0.7674 | 0.2913 | | 0.4522 | 3.76 | 700 | 0.7849 | 0.2869 | ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 1.13.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3