BrainTheos commited on
Commit
27a0217
1 Parent(s): 35332a7

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +104 -0
README.md ADDED
@@ -0,0 +1,104 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-nc-4.0
3
+ base_model: facebook/mms-1b-all
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - audiofolder
8
+ metrics:
9
+ - wer
10
+ model-index:
11
+ - name: wav2vec2-large-mms-1b-all-lingala-ojpl
12
+ results:
13
+ - task:
14
+ name: Automatic Speech Recognition
15
+ type: automatic-speech-recognition
16
+ dataset:
17
+ name: audiofolder
18
+ type: audiofolder
19
+ config: default
20
+ split: train
21
+ args: default
22
+ metrics:
23
+ - name: Wer
24
+ type: wer
25
+ value: 0.2697881828316611
26
+ ---
27
+
28
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
+ should probably proofread and complete it, then remove this comment. -->
30
+
31
+ # wav2vec2-large-mms-1b-all-lingala-ojpl
32
+
33
+ This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) on the audiofolder dataset.
34
+ It achieves the following results on the evaluation set:
35
+ - Loss: 0.8394
36
+ - Wer: 0.2698
37
+
38
+ ## Model description
39
+
40
+ More information needed
41
+
42
+ ## Intended uses & limitations
43
+
44
+ More information needed
45
+
46
+ ## Training and evaluation data
47
+
48
+ More information needed
49
+
50
+ ## Training procedure
51
+
52
+ ### Training hyperparameters
53
+
54
+ The following hyperparameters were used during training:
55
+ - learning_rate: 0.001
56
+ - train_batch_size: 1
57
+ - eval_batch_size: 8
58
+ - seed: 42
59
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
60
+ - lr_scheduler_type: linear
61
+ - lr_scheduler_warmup_steps: 100
62
+ - num_epochs: 4
63
+
64
+ ### Training results
65
+
66
+ | Training Loss | Epoch | Step | Validation Loss | Wer |
67
+ |:-------------:|:-----:|:----:|:---------------:|:------:|
68
+ | 0.5442 | 0.13 | 100 | 0.9396 | 0.3307 |
69
+ | 0.9882 | 0.27 | 200 | 0.9189 | 0.3389 |
70
+ | 0.5845 | 0.4 | 300 | 0.9322 | 0.3129 |
71
+ | 0.4162 | 0.54 | 400 | 1.0742 | 0.2939 |
72
+ | 0.506 | 0.67 | 500 | 0.9626 | 0.3077 |
73
+ | 0.8789 | 0.81 | 600 | 1.0502 | 0.3055 |
74
+ | 0.6166 | 0.94 | 700 | 0.9560 | 0.2984 |
75
+ | 0.4101 | 1.08 | 800 | 0.9520 | 0.2995 |
76
+ | 0.6536 | 1.21 | 900 | 1.1213 | 0.2988 |
77
+ | 0.4921 | 1.34 | 1000 | 1.0319 | 0.3010 |
78
+ | 0.856 | 1.48 | 1100 | 0.9514 | 0.3043 |
79
+ | 0.4479 | 1.61 | 1200 | 0.9079 | 0.2843 |
80
+ | 0.7249 | 1.75 | 1300 | 0.9612 | 0.2895 |
81
+ | 0.5384 | 1.88 | 1400 | 0.9050 | 0.2928 |
82
+ | 0.709 | 2.02 | 1500 | 0.9844 | 0.2735 |
83
+ | 0.6575 | 2.15 | 1600 | 0.9377 | 0.2772 |
84
+ | 0.6115 | 2.28 | 1700 | 0.9690 | 0.2876 |
85
+ | 0.3119 | 2.42 | 1800 | 0.9222 | 0.2798 |
86
+ | 0.3591 | 2.55 | 1900 | 0.9358 | 0.2783 |
87
+ | 0.3979 | 2.69 | 2000 | 0.9156 | 0.2702 |
88
+ | 0.7541 | 2.82 | 2100 | 0.8838 | 0.2761 |
89
+ | 0.81 | 2.96 | 2200 | 0.8460 | 0.2813 |
90
+ | 0.2224 | 3.09 | 2300 | 0.9377 | 0.2694 |
91
+ | 0.2338 | 3.23 | 2400 | 0.8870 | 0.2746 |
92
+ | 0.5315 | 3.36 | 2500 | 0.8782 | 0.2672 |
93
+ | 0.4045 | 3.49 | 2600 | 0.8811 | 0.2653 |
94
+ | 0.4874 | 3.63 | 2700 | 0.9059 | 0.2620 |
95
+ | 0.304 | 3.76 | 2800 | 0.8801 | 0.2690 |
96
+ | 1.4688 | 3.9 | 2900 | 0.8394 | 0.2698 |
97
+
98
+
99
+ ### Framework versions
100
+
101
+ - Transformers 4.32.0.dev0
102
+ - Pytorch 1.13.1+cu117
103
+ - Datasets 2.13.1
104
+ - Tokenizers 0.13.3