File size: 2,022 Bytes
9eea186 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
---
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_trainer
datasets:
- BrainTheos/ojpl
metrics:
- wer
model-index:
- name: whisper-tiny-ln-ojpl-2
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: BrainTheos/ojpl
type: BrainTheos/ojpl
config: default
split: train
args: default
metrics:
- name: Wer
type: wer
value: 0.4351648351648352
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# whisper-tiny-ln-ojpl-2
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the BrainTheos/ojpl dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2661
- Wer Ortho: 50.1855
- Wer: 0.4352
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_steps: 50
- training_steps: 2000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|
| 0.1767 | 11.36 | 500 | 0.9122 | 52.1142 | 0.4579 |
| 0.0191 | 22.73 | 1000 | 1.0786 | 53.7463 | 0.4538 |
| 0.0059 | 34.09 | 1500 | 1.1891 | 53.2641 | 0.4766 |
| 0.0019 | 45.45 | 2000 | 1.2661 | 50.1855 | 0.4352 |
### Framework versions
- Transformers 4.31.0.dev0
- Pytorch 2.0.0+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3
|