--- language: - sn license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - google/fleurs metrics: - wer model-index: - name: Whisper Small Sn - Brian Mupini results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: fleurs type: google/fleurs config: sn_zw split: test args: sn_zw metrics: - name: Wer type: wer value: 37.525 --- # Whisper Small Sn - Brian Mupini This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the fleurs dataset. It achieves the following results on the evaluation set: - Loss: 0.5644 - Wer Ortho: 37.8217 - Wer: 37.525 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 50 - training_steps: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:| | 0.1265 | 2.81 | 500 | 0.5644 | 37.8217 | 37.525 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.14.7 - Tokenizers 0.15.0