update readme
Browse files
README.md
CHANGED
@@ -31,9 +31,10 @@ In this repository, we release the models distilled from [SDXL Base 1.0](https:/
|
|
31 |
* `Hyper-SD15-Nstep-lora.safetensors`: Lora checkpoint, for SD1.5-related models.
|
32 |
* `Hyper-SDXL-1step-unet.safetensors`: Unet checkpoint distilled from SDXL-Base.
|
33 |
|
34 |
-
##
|
35 |
-
|
36 |
-
|
|
|
37 |
```python
|
38 |
import torch
|
39 |
from diffusers import DiffusionPipeline, DDIMScheduler
|
@@ -46,14 +47,15 @@ ckpt_name = "Hyper-SDXL-2steps-lora.safetensors"
|
|
46 |
pipe = DiffusionPipeline.from_pretrained(base_model_id, torch_dtype=torch.float16, variant="fp16").to("cuda")
|
47 |
pipe.load_lora_weights(hf_hub_download(repo_name, ckpt_name))
|
48 |
pipe.fuse_lora()
|
49 |
-
# Ensure ddim scheduler timestep spacing set as trailing
|
50 |
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
|
51 |
# lower eta results in more detail
|
52 |
prompt="a photo of a cat"
|
53 |
image=pipe(prompt=prompt, num_inference_steps=2, guidance_scale=0).images[0]
|
54 |
```
|
55 |
|
56 |
-
|
|
|
57 |
```python
|
58 |
import torch
|
59 |
from diffusers import DiffusionPipeline, TCDScheduler
|
@@ -67,15 +69,14 @@ pipe.load_lora_weights(hf_hub_download(repo_name, ckpt_name))
|
|
67 |
pipe.fuse_lora()
|
68 |
# Use TCD scheduler to achieve better image quality
|
69 |
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
|
70 |
-
#
|
71 |
eta=1.0
|
72 |
prompt="a photo of a cat"
|
73 |
image=pipe(prompt=prompt, num_inference_steps=1, guidance_scale=0, eta=eta).images[0]
|
74 |
```
|
75 |
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
```python
|
80 |
import torch
|
81 |
from diffusers import DiffusionPipeline, UNet2DConditionModel, LCMScheduler
|
@@ -96,10 +97,10 @@ image=pipe(prompt=prompt, num_inference_steps=1, guidance_scale=0, timesteps=[80
|
|
96 |
```
|
97 |
|
98 |
|
|
|
99 |
|
100 |
-
|
101 |
-
|
102 |
-
### 2-Steps, 4-Steps, 8-steps LoRA
|
103 |
```python
|
104 |
import torch
|
105 |
from diffusers import DiffusionPipeline, DDIMScheduler
|
@@ -112,14 +113,15 @@ ckpt_name = "Hyper-SD15-2steps-lora.safetensors"
|
|
112 |
pipe = DiffusionPipeline.from_pretrained(base_model_id, torch_dtype=torch.float16, variant="fp16").to("cuda")
|
113 |
pipe.load_lora_weights(hf_hub_download(repo_name, ckpt_name))
|
114 |
pipe.fuse_lora()
|
115 |
-
# Ensure ddim scheduler timestep spacing set as trailing
|
116 |
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
|
117 |
prompt="a photo of a cat"
|
118 |
image=pipe(prompt=prompt, num_inference_steps=2, guidance_scale=0).images[0]
|
119 |
```
|
120 |
|
121 |
|
122 |
-
|
|
|
123 |
```python
|
124 |
import torch
|
125 |
from diffusers import DiffusionPipeline, TCDScheduler
|
@@ -133,12 +135,180 @@ pipe.load_lora_weights(hf_hub_download(repo_name, ckpt_name))
|
|
133 |
pipe.fuse_lora()
|
134 |
# Use TCD scheduler to achieve better image quality
|
135 |
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
|
136 |
-
# Lower eta results in more detail
|
137 |
eta=1.0
|
138 |
prompt="a photo of a cat"
|
139 |
image=pipe(prompt=prompt, num_inference_steps=1, guidance_scale=0, eta=eta).images[0]
|
140 |
```
|
141 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
142 |
## Citation
|
143 |
```bibtex
|
144 |
@article{ren2024hypersd,
|
|
|
31 |
* `Hyper-SD15-Nstep-lora.safetensors`: Lora checkpoint, for SD1.5-related models.
|
32 |
* `Hyper-SDXL-1step-unet.safetensors`: Unet checkpoint distilled from SDXL-Base.
|
33 |
|
34 |
+
## Text-to-Image Usage
|
35 |
+
### SDXL-related models
|
36 |
+
#### 2-Steps, 4-Steps, 8-steps LoRA
|
37 |
+
Take the 2-steps LoRA as an example, you can also use other LoRAs for the corresponding inference steps setting.
|
38 |
```python
|
39 |
import torch
|
40 |
from diffusers import DiffusionPipeline, DDIMScheduler
|
|
|
47 |
pipe = DiffusionPipeline.from_pretrained(base_model_id, torch_dtype=torch.float16, variant="fp16").to("cuda")
|
48 |
pipe.load_lora_weights(hf_hub_download(repo_name, ckpt_name))
|
49 |
pipe.fuse_lora()
|
50 |
+
# Ensure ddim scheduler timestep spacing set as trailing !!!
|
51 |
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
|
52 |
# lower eta results in more detail
|
53 |
prompt="a photo of a cat"
|
54 |
image=pipe(prompt=prompt, num_inference_steps=2, guidance_scale=0).images[0]
|
55 |
```
|
56 |
|
57 |
+
#### Unified LoRA (support 1 to 8 steps inference)
|
58 |
+
You can flexibly adjust the number of inference steps and eta value to achieve best performance.
|
59 |
```python
|
60 |
import torch
|
61 |
from diffusers import DiffusionPipeline, TCDScheduler
|
|
|
69 |
pipe.fuse_lora()
|
70 |
# Use TCD scheduler to achieve better image quality
|
71 |
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
|
72 |
+
# Lower eta results in more detail for multi-steps inference
|
73 |
eta=1.0
|
74 |
prompt="a photo of a cat"
|
75 |
image=pipe(prompt=prompt, num_inference_steps=1, guidance_scale=0, eta=eta).images[0]
|
76 |
```
|
77 |
|
78 |
+
#### 1-step SDXL Unet
|
79 |
+
Only for the single step inference.
|
|
|
80 |
```python
|
81 |
import torch
|
82 |
from diffusers import DiffusionPipeline, UNet2DConditionModel, LCMScheduler
|
|
|
97 |
```
|
98 |
|
99 |
|
100 |
+
### SD1.5-related models
|
101 |
|
102 |
+
#### 2-Steps, 4-Steps, 8-steps LoRA
|
103 |
+
Take the 2-steps LoRA as an example, you can also use other LoRAs for the corresponding inference steps setting.
|
|
|
104 |
```python
|
105 |
import torch
|
106 |
from diffusers import DiffusionPipeline, DDIMScheduler
|
|
|
113 |
pipe = DiffusionPipeline.from_pretrained(base_model_id, torch_dtype=torch.float16, variant="fp16").to("cuda")
|
114 |
pipe.load_lora_weights(hf_hub_download(repo_name, ckpt_name))
|
115 |
pipe.fuse_lora()
|
116 |
+
# Ensure ddim scheduler timestep spacing set as trailing !!!
|
117 |
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
|
118 |
prompt="a photo of a cat"
|
119 |
image=pipe(prompt=prompt, num_inference_steps=2, guidance_scale=0).images[0]
|
120 |
```
|
121 |
|
122 |
|
123 |
+
#### Unified LoRA (support 1 to 8 steps inference)
|
124 |
+
You can flexibly adjust the number of inference steps and eta value to achieve best performance.
|
125 |
```python
|
126 |
import torch
|
127 |
from diffusers import DiffusionPipeline, TCDScheduler
|
|
|
135 |
pipe.fuse_lora()
|
136 |
# Use TCD scheduler to achieve better image quality
|
137 |
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
|
138 |
+
# Lower eta results in more detail for multi-steps inference
|
139 |
eta=1.0
|
140 |
prompt="a photo of a cat"
|
141 |
image=pipe(prompt=prompt, num_inference_steps=1, guidance_scale=0, eta=eta).images[0]
|
142 |
```
|
143 |
|
144 |
+
## ControlNet Usage
|
145 |
+
### SDXL-related models
|
146 |
+
|
147 |
+
#### 2-Steps, 4-Steps, 8-steps LoRA
|
148 |
+
Take Canny Controlnet and 2-steps inference as an example:
|
149 |
+
```python
|
150 |
+
import torch
|
151 |
+
from diffusers.utils import load_image
|
152 |
+
import numpy as np
|
153 |
+
import cv2
|
154 |
+
from PIL import Image
|
155 |
+
from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL, DDIMScheduler
|
156 |
+
from huggingface_hub import hf_hub_download
|
157 |
+
|
158 |
+
# Load original image
|
159 |
+
image = load_image("https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/hf-logo.png")
|
160 |
+
image = np.array(image)
|
161 |
+
# Prepare Canny Control Image
|
162 |
+
low_threshold = 100
|
163 |
+
high_threshold = 200
|
164 |
+
image = cv2.Canny(image, low_threshold, high_threshold)
|
165 |
+
image = image[:, :, None]
|
166 |
+
image = np.concatenate([image, image, image], axis=2)
|
167 |
+
control_image = Image.fromarray(image)
|
168 |
+
control_image.save("control.png")
|
169 |
+
control_weight = 0.5 # recommended for good generalization
|
170 |
+
|
171 |
+
# Initialize pipeline
|
172 |
+
controlnet = ControlNetModel.from_pretrained(
|
173 |
+
"diffusers/controlnet-canny-sdxl-1.0",
|
174 |
+
torch_dtype=torch.float16
|
175 |
+
)
|
176 |
+
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
177 |
+
pipe = StableDiffusionXLControlNetPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", controlnet=controlnet, vae=vae, torch_dtype=torch.float16).to("cuda")
|
178 |
+
|
179 |
+
pipe.load_lora_weights(hf_hub_download("ByteDance/Hyper-SD", "Hyper-SDXL-2steps-lora.safetensors"))
|
180 |
+
# Ensure ddim scheduler timestep spacing set as trailing !!!
|
181 |
+
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
|
182 |
+
pipe.fuse_lora()
|
183 |
+
image = pipe("A chocolate cookie", num_inference_steps=2, image=control_image, guidance_scale=0, controlnet_conditioning_scale=control_weight).images[0]
|
184 |
+
image.save('image_out.png')
|
185 |
+
```
|
186 |
+
|
187 |
+
#### Unified LoRA (support 1 to 8 steps inference)
|
188 |
+
Take Canny Controlnet as an example:
|
189 |
+
```python
|
190 |
+
import torch
|
191 |
+
from diffusers.utils import load_image
|
192 |
+
import numpy as np
|
193 |
+
import cv2
|
194 |
+
from PIL import Image
|
195 |
+
from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL, TCDScheduler
|
196 |
+
from huggingface_hub import hf_hub_download
|
197 |
+
|
198 |
+
# Load original image
|
199 |
+
image = load_image("https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/hf-logo.png")
|
200 |
+
image = np.array(image)
|
201 |
+
# Prepare Canny Control Image
|
202 |
+
low_threshold = 100
|
203 |
+
high_threshold = 200
|
204 |
+
image = cv2.Canny(image, low_threshold, high_threshold)
|
205 |
+
image = image[:, :, None]
|
206 |
+
image = np.concatenate([image, image, image], axis=2)
|
207 |
+
control_image = Image.fromarray(image)
|
208 |
+
control_image.save("control.png")
|
209 |
+
control_weight = 0.5 # recommended for good generalization
|
210 |
+
|
211 |
+
# Initialize pipeline
|
212 |
+
controlnet = ControlNetModel.from_pretrained(
|
213 |
+
"diffusers/controlnet-canny-sdxl-1.0",
|
214 |
+
torch_dtype=torch.float16
|
215 |
+
)
|
216 |
+
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
217 |
+
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
|
218 |
+
"stabilityai/stable-diffusion-xl-base-1.0",
|
219 |
+
controlnet=controlnet, vae=vae, torch_dtype=torch.float16).to("cuda")
|
220 |
+
|
221 |
+
# Load Hyper-SD15-1step lora
|
222 |
+
pipe.load_lora_weights(hf_hub_download("ByteDance/Hyper-SD", "Hyper-SDXL-1step-lora.safetensors"))
|
223 |
+
pipe.fuse_lora()
|
224 |
+
# Use TCD scheduler to achieve better image quality
|
225 |
+
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
|
226 |
+
# Lower eta results in more detail for multi-steps inference
|
227 |
+
eta=1.0
|
228 |
+
image = pipe("A chocolate cookie", num_inference_steps=4, image=control_image, guidance_scale=0, controlnet_conditioning_scale=control_weight, eta=eta).images[0]
|
229 |
+
image.save('image_out.png')
|
230 |
+
```
|
231 |
+
|
232 |
+
### SD1.5-related models
|
233 |
+
|
234 |
+
#### 2-Steps, 4-Steps, 8-steps LoRA
|
235 |
+
Take Canny Controlnet and 2-steps inference as an example:
|
236 |
+
```python
|
237 |
+
import torch
|
238 |
+
from diffusers.utils import load_image
|
239 |
+
import numpy as np
|
240 |
+
import cv2
|
241 |
+
from PIL import Image
|
242 |
+
from diffusers import ControlNetModel, StableDiffusionControlNetPipeline, DDIMScheduler
|
243 |
+
|
244 |
+
from huggingface_hub import hf_hub_download
|
245 |
+
|
246 |
+
controlnet_checkpoint = "lllyasviel/control_v11p_sd15_canny"
|
247 |
+
|
248 |
+
# Load original image
|
249 |
+
image = load_image("https://huggingface.co/lllyasviel/control_v11p_sd15_canny/resolve/main/images/input.png")
|
250 |
+
image = np.array(image)
|
251 |
+
# Prepare Canny Control Image
|
252 |
+
low_threshold = 100
|
253 |
+
high_threshold = 200
|
254 |
+
image = cv2.Canny(image, low_threshold, high_threshold)
|
255 |
+
image = image[:, :, None]
|
256 |
+
image = np.concatenate([image, image, image], axis=2)
|
257 |
+
control_image = Image.fromarray(image)
|
258 |
+
control_image.save("control.png")
|
259 |
+
|
260 |
+
# Initialize pipeline
|
261 |
+
controlnet = ControlNetModel.from_pretrained(controlnet_checkpoint, torch_dtype=torch.float16)
|
262 |
+
pipe = StableDiffusionControlNetPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16).to("cuda")
|
263 |
+
pipe.load_lora_weights(hf_hub_download("ByteDance/Hyper-SD", "Hyper-SD15-2steps-lora.safetensors"))
|
264 |
+
pipe.fuse_lora()
|
265 |
+
# Ensure ddim scheduler timestep spacing set as trailing !!!
|
266 |
+
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
|
267 |
+
image = pipe("a blue paradise bird in the jungle", num_inference_steps=2, image=control_image, guidance_scale=0).images[0]
|
268 |
+
image.save('image_out.png')
|
269 |
+
```
|
270 |
+
|
271 |
+
|
272 |
+
#### Unified LoRA (support 1 to 8 steps inference)
|
273 |
+
Take Canny Controlnet as an example:
|
274 |
+
```python
|
275 |
+
import torch
|
276 |
+
from diffusers.utils import load_image
|
277 |
+
import numpy as np
|
278 |
+
import cv2
|
279 |
+
from PIL import Image
|
280 |
+
from diffusers import ControlNetModel, StableDiffusionControlNetPipeline, TCDScheduler
|
281 |
+
from huggingface_hub import hf_hub_download
|
282 |
+
|
283 |
+
controlnet_checkpoint = "lllyasviel/control_v11p_sd15_canny"
|
284 |
+
|
285 |
+
# Load original image
|
286 |
+
image = load_image("https://huggingface.co/lllyasviel/control_v11p_sd15_canny/resolve/main/images/input.png")
|
287 |
+
image = np.array(image)
|
288 |
+
# Prepare Canny Control Image
|
289 |
+
low_threshold = 100
|
290 |
+
high_threshold = 200
|
291 |
+
image = cv2.Canny(image, low_threshold, high_threshold)
|
292 |
+
image = image[:, :, None]
|
293 |
+
image = np.concatenate([image, image, image], axis=2)
|
294 |
+
control_image = Image.fromarray(image)
|
295 |
+
control_image.save("control.png")
|
296 |
+
|
297 |
+
# Initialize pipeline
|
298 |
+
controlnet = ControlNetModel.from_pretrained(controlnet_checkpoint, torch_dtype=torch.float16)
|
299 |
+
pipe = StableDiffusionControlNetPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16).to("cuda")
|
300 |
+
# Load Hyper-SD15-1step lora
|
301 |
+
pipe.load_lora_weights(hf_hub_download("ByteDance/Hyper-SD", "Hyper-SD15-1step-lora.safetensors"))
|
302 |
+
pipe.fuse_lora()
|
303 |
+
# Use TCD scheduler to achieve better image quality
|
304 |
+
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
|
305 |
+
# Lower eta results in more detail for multi-steps inference
|
306 |
+
eta=1.0
|
307 |
+
image = pipe("a blue paradise bird in the jungle", num_inference_steps=1, image=control_image, guidance_scale=0, eta=eta).images[0]
|
308 |
+
image.save('image_out.png')
|
309 |
+
```
|
310 |
+
|
311 |
+
|
312 |
## Citation
|
313 |
```bibtex
|
314 |
@article{ren2024hypersd,
|