Upload folder using huggingface_hub
Browse files- README.md +159 -0
- added_tokens.json +16 -0
- config.json +203 -0
- configuration_intern_vit.py +120 -0
- configuration_internlm2.py +150 -0
- configuration_phi3.py +211 -0
- configuration_sa2va_chat.py +107 -0
- flash_attention.py +76 -0
- generation_config.json +4 -0
- model-00001-of-00007.safetensors +3 -0
- model-00002-of-00007.safetensors +3 -0
- model-00003-of-00007.safetensors +3 -0
- model-00004-of-00007.safetensors +3 -0
- model-00005-of-00007.safetensors +3 -0
- model-00006-of-00007.safetensors +3 -0
- model-00007-of-00007.safetensors +3 -0
- model.safetensors.index.json +0 -0
- modeling_intern_vit.py +364 -0
- modeling_internlm2.py +1429 -0
- modeling_phi3.py +1610 -0
- modeling_sa2va_chat.py +866 -0
- sam2.py +0 -0
- special_tokens_map.json +82 -0
- templates.py +170 -0
- tokenization_internlm2.py +235 -0
- tokenization_internlm2_fast.py +211 -0
- tokenizer.model +3 -0
- tokenizer_config.json +225 -0
README.md
ADDED
@@ -0,0 +1,159 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
pipeline_tag: image-text-to-text
|
4 |
+
library_name: transformers
|
5 |
+
base_model:
|
6 |
+
- OpenGVLab/InternVL2_5-8B
|
7 |
+
- OpenGVLab/InternViT-300M-448px-V2_5
|
8 |
+
- internlm/internlm2_5-7b-chat
|
9 |
+
base_model_relation: merge
|
10 |
+
language:
|
11 |
+
- multilingual
|
12 |
+
tags:
|
13 |
+
- Sa2VA
|
14 |
+
- custom_code
|
15 |
+
---
|
16 |
+
|
17 |
+
# Sa2VA: Marrying SAM2 with LLaVA for Dense Grounded Understanding of Images and Videos
|
18 |
+
|
19 |
+
[\[📂 GitHub\]](https://github.com/lxtGH/Sa2VA_opensource)
|
20 |
+
[\[📜 Sa2VA paper\]]()
|
21 |
+
[\[🚀 Quick Start\]](#quick-start)
|
22 |
+
|
23 |
+
|
24 |
+
|
25 |
+
## Introduction
|
26 |
+
|
27 |
+
Sa2VA is an MLLM capable of question answering, visual prompt understanding, and dense object segmentation at both image and video levels. It achieves comparable performance to SOTA MLLMs Qwen2-VL and InternVL2.5 on question-answering benchmarks. Additionally, Sa2VA possesses the visual prompt understanding and dense object segmentation capabilities that SOTA MLLMs Qwen2-VL and InternVL2.5 lack. Sa2VA achieves SOTA performance on both image and video grounding and segmentation benchmarks.
|
28 |
+
|
29 |
+
## Sa2VA Family
|
30 |
+
|
31 |
+
We built the Sa2VA series based on Qwen2-VL and InternVL2/2.5. In the following table, we provide some Sa2VA models built on InternVL2.5. Other Sa2VA models will be open-sourced soon.
|
32 |
+
|
33 |
+
| Model Name | Base MLLM | Language Part | HF Link |
|
34 |
+
|:----------:|:-----------------------------------------------------------------:|:-----------------------------------------------------------------------------:|:----------------------------------------------------:|
|
35 |
+
| Sa2VA-1B | [InternVL2.5-1B](https://huggingface.co/OpenGVLab/InternVL2_5-1B) | [Qwen2.5-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct) | [🤗 link](https://huggingface.co/ByteDance/Sa2VA-1B) |
|
36 |
+
| Sa2VA-4B | [InternVL2.5-4B](https://huggingface.co/OpenGVLab/InternVL2_5-4B) | [Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct) | [🤗 link](https://huggingface.co/ByteDance/Sa2VA-4B) |
|
37 |
+
| Sa2VA-8B | [InternVL2.5-8B](https://huggingface.co/OpenGVLab/InternVL2_5-8B) | [internlm2_5-7b-chat](https://huggingface.co/internlm/internlm2_5-7b-chat) | [🤗 link](https://huggingface.co/ByteDance/Sa2VA-8B) |
|
38 |
+
|
39 |
+
## Sa2VA Performance
|
40 |
+
| Model Name | MMBench | MME | RefCOCO | RefCOCO+ | RefCOCOg | MeVIS | DAVIS | ReVOS |
|
41 |
+
|:----------:|:---------------------------------------------------------------:|:--------------------------------------------------------------------------:|:----------------------------------------------------:|:----------------------------------------------------:|:----------------------------------------------------:|:----------------------------------------------------:|:----------------------------------------------------:|:-----:|
|
42 |
+
| Sa2VA-1B | 1381/405 | 68.3 | 77.4 | 69.9 | 72.3 | 50.8 | 72.3 | 47.6 |
|
43 |
+
| Sa2VA-4B | 1536/530 | 77.3 | 78.9 | 71.7 | 74.1 | 52.1 | 73.8 | 53.2 |
|
44 |
+
| Sa2VA-8B | 1617/511 | 81.6 | 81.6 | 76.2 | 78.7 | 57.0 | 75.2 | 57.6 |
|
45 |
+
|
46 |
+
|
47 |
+
## Quick Start
|
48 |
+
|
49 |
+
We provide an example code to run `Sa2VA` using `transformers`.
|
50 |
+
|
51 |
+
```python
|
52 |
+
import torch
|
53 |
+
from transformers import AutoTokenizer, AutoModel
|
54 |
+
from PIL import Image
|
55 |
+
import numpy as np
|
56 |
+
import os
|
57 |
+
|
58 |
+
# load the model and tokenizer
|
59 |
+
path = "ByteDance/Sa2VA-4B"
|
60 |
+
model = AutoModel.from_pretrained(
|
61 |
+
path,
|
62 |
+
torch_dtype=torch.bfloat16,
|
63 |
+
low_cpu_mem_usage=True,
|
64 |
+
use_flash_attn=True,
|
65 |
+
trust_remote_code=True).eval().cuda()
|
66 |
+
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)
|
67 |
+
|
68 |
+
# for image chat
|
69 |
+
image_path = "/PATH/TO/IMAGE"
|
70 |
+
text_prompts = "Please describe the image."
|
71 |
+
image = Image.open(image_path).convert('RGB')
|
72 |
+
input_dict = {
|
73 |
+
'image': image,
|
74 |
+
'text': text_prompts,
|
75 |
+
'past_text': '',
|
76 |
+
'mask_prompts': None,
|
77 |
+
'tokenizer': tokenizer,
|
78 |
+
}
|
79 |
+
return_dict = model.predict_forward(**input_dict)
|
80 |
+
answer = return_dict["prediction"] # the text format answer
|
81 |
+
|
82 |
+
# for image chat with segmentation output
|
83 |
+
image_path = "/PATH/TO/IMAGE"
|
84 |
+
text_prompts = "Could you please give me a brief description of the image? Please respond with interleaved segmentation masks for the corresponding parts of the answer."
|
85 |
+
image = Image.open(image_path).convert('RGB')
|
86 |
+
input_dict = {
|
87 |
+
'image': image,
|
88 |
+
'text': text_prompts,
|
89 |
+
'past_text': '',
|
90 |
+
'mask_prompts': None,
|
91 |
+
'tokenizer': tokenizer,
|
92 |
+
}
|
93 |
+
return_dict = model.predict_forward(**input_dict)
|
94 |
+
answer = return_dict["prediction"] # the text format answer
|
95 |
+
masks = return_dict['prediction_masks'] # segmentation masks, list(np.array(1, h, w), ...)
|
96 |
+
|
97 |
+
# for chat with visual prompt (mask format) input
|
98 |
+
mask_prompts = np.load('/PATH/TO/pred_masks.npy') # np.array(n_prompts, h, w)
|
99 |
+
image_path = "/PATH/TO/IMAGE"
|
100 |
+
text_prompts = "Can you provide me with a detailed description of the region in the picture marked by region1."
|
101 |
+
image = Image.open(image_path).convert('RGB')
|
102 |
+
input_dict = {
|
103 |
+
'image': image,
|
104 |
+
'text': text_prompts,
|
105 |
+
'past_text': '',
|
106 |
+
'mask_prompts': mask_prompts,
|
107 |
+
'tokenizer': tokenizer,
|
108 |
+
}
|
109 |
+
return_dict = model.predict_forward(**input_dict)
|
110 |
+
answer = return_dict["prediction"] # the text format answer
|
111 |
+
|
112 |
+
# for video chat
|
113 |
+
video_folder = "/PATH/TO/VIDEO_FOLDER"
|
114 |
+
images_paths = os.listdir(video_folder)
|
115 |
+
images_paths = [os.path.join(video_folder, image_path) for image_name in images_paths]
|
116 |
+
if len(images_paths) > 5: # uniformly sample 5 frames
|
117 |
+
step = (len(images_paths) - 1) // (5 - 1)
|
118 |
+
images_paths = [images_paths[0]] + images_paths[1:-1][::step][1:] + [images_paths[-1]]
|
119 |
+
text_prompts = "Please describe the video."
|
120 |
+
input_dict = {
|
121 |
+
'video': images_paths,
|
122 |
+
'text': text_prompts,
|
123 |
+
'past_text': '',
|
124 |
+
'mask_prompts': None,
|
125 |
+
'tokenizer': tokenizer,
|
126 |
+
}
|
127 |
+
return_dict = model.predict_forward(**input_dict)
|
128 |
+
answer = return_dict["prediction"] # the text format answer
|
129 |
+
|
130 |
+
|
131 |
+
# for video chat with segmentation mask output
|
132 |
+
video_folder = "/PATH/TO/VIDEO_FOLDER"
|
133 |
+
images_paths = os.listdir(video_folder)
|
134 |
+
images_paths = [os.path.join(video_folder, image_path) for image_name in images_paths]
|
135 |
+
text_prompts = "Please segment the person."
|
136 |
+
input_dict = {
|
137 |
+
'video': images_paths,
|
138 |
+
'text': text_prompts,
|
139 |
+
'past_text': '',
|
140 |
+
'mask_prompts': None,
|
141 |
+
'tokenizer': tokenizer,
|
142 |
+
}
|
143 |
+
return_dict = model.predict_forward(**input_dict)
|
144 |
+
answer = return_dict["prediction"] # the text format answer
|
145 |
+
masks = return_dict['prediction_masks'] # segmentation masks, list(np.array(n_frames, h, w), ...)
|
146 |
+
```
|
147 |
+
|
148 |
+
## Citation
|
149 |
+
|
150 |
+
If you find this project useful in your research, please consider citing:
|
151 |
+
|
152 |
+
```BibTeX
|
153 |
+
@article{sa2va,
|
154 |
+
title={Sa2VA: Marrying SAM2 with LLaVA for Dense Grounded Understanding of Images and Videos},
|
155 |
+
author={Yuan, Haobo and Li, Xiangtai and Zhang, Tao and Huang, Zilong Huang and Xu, Shilin and Ji, Shunping and Tong, Yunhai and Qi, Lu and Feng, Jiashi and Yang, Ming-Hsuan},
|
156 |
+
journal={arXiv preprint},
|
157 |
+
year={2025}
|
158 |
+
}
|
159 |
+
```
|
added_tokens.json
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</box>": 92552,
|
3 |
+
"</img>": 92545,
|
4 |
+
"</p>": 92555,
|
5 |
+
"</quad>": 92548,
|
6 |
+
"</ref>": 92550,
|
7 |
+
"</vp>": 92557,
|
8 |
+
"<IMG_CONTEXT>": 92546,
|
9 |
+
"<box>": 92551,
|
10 |
+
"<img>": 92544,
|
11 |
+
"<p>": 92554,
|
12 |
+
"<quad>": 92547,
|
13 |
+
"<ref>": 92549,
|
14 |
+
"<vp>": 92556,
|
15 |
+
"[SEG]": 92553
|
16 |
+
}
|
config.json
ADDED
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_commit_hash": null,
|
3 |
+
"architectures": [
|
4 |
+
"Sa2VAChatModel"
|
5 |
+
],
|
6 |
+
"auto_map": {
|
7 |
+
"AutoConfig": "configuration_sa2va_chat.Sa2VAChatConfig",
|
8 |
+
"AutoModel": "modeling_sa2va_chat.Sa2VAChatModel",
|
9 |
+
"AutoModelForCausalLM": "modeling_sa2va_chat.Sa2VAChatModel"
|
10 |
+
},
|
11 |
+
"downsample_ratio": 0.5,
|
12 |
+
"dynamic_image_size": true,
|
13 |
+
"force_image_size": 448,
|
14 |
+
"hidden_size": 4096,
|
15 |
+
"llm_config": {
|
16 |
+
"_name_or_path": "internlm/internlm2_5-7b-chat",
|
17 |
+
"add_cross_attention": false,
|
18 |
+
"architectures": [
|
19 |
+
"InternLM2ForCausalLM"
|
20 |
+
],
|
21 |
+
"attn_implementation": "flash_attention_2",
|
22 |
+
"auto_map": {
|
23 |
+
"AutoConfig": "configuration_internlm2.InternLM2Config",
|
24 |
+
"AutoModel": "modeling_internlm2.InternLM2ForCausalLM",
|
25 |
+
"AutoModelForCausalLM": "modeling_internlm2.InternLM2ForCausalLM",
|
26 |
+
"AutoModelForSequenceClassification": "modeling_internlm2.InternLM2ForSequenceClassification"
|
27 |
+
},
|
28 |
+
"bad_words_ids": null,
|
29 |
+
"begin_suppress_tokens": null,
|
30 |
+
"bias": false,
|
31 |
+
"bos_token_id": 1,
|
32 |
+
"chunk_size_feed_forward": 0,
|
33 |
+
"cross_attention_hidden_size": null,
|
34 |
+
"decoder_start_token_id": null,
|
35 |
+
"diversity_penalty": 0.0,
|
36 |
+
"do_sample": false,
|
37 |
+
"early_stopping": false,
|
38 |
+
"encoder_no_repeat_ngram_size": 0,
|
39 |
+
"eos_token_id": 2,
|
40 |
+
"exponential_decay_length_penalty": null,
|
41 |
+
"finetuning_task": null,
|
42 |
+
"forced_bos_token_id": null,
|
43 |
+
"forced_eos_token_id": null,
|
44 |
+
"hidden_act": "silu",
|
45 |
+
"hidden_size": 4096,
|
46 |
+
"id2label": {
|
47 |
+
"0": "LABEL_0",
|
48 |
+
"1": "LABEL_1"
|
49 |
+
},
|
50 |
+
"initializer_range": 0.02,
|
51 |
+
"intermediate_size": 14336,
|
52 |
+
"is_decoder": false,
|
53 |
+
"is_encoder_decoder": false,
|
54 |
+
"label2id": {
|
55 |
+
"LABEL_0": 0,
|
56 |
+
"LABEL_1": 1
|
57 |
+
},
|
58 |
+
"length_penalty": 1.0,
|
59 |
+
"max_length": 20,
|
60 |
+
"max_position_embeddings": 32768,
|
61 |
+
"min_length": 0,
|
62 |
+
"model_type": "internlm2",
|
63 |
+
"no_repeat_ngram_size": 0,
|
64 |
+
"num_attention_heads": 32,
|
65 |
+
"num_beam_groups": 1,
|
66 |
+
"num_beams": 1,
|
67 |
+
"num_hidden_layers": 32,
|
68 |
+
"num_key_value_heads": 8,
|
69 |
+
"num_return_sequences": 1,
|
70 |
+
"output_attentions": false,
|
71 |
+
"output_hidden_states": false,
|
72 |
+
"output_scores": false,
|
73 |
+
"pad_token_id": 2,
|
74 |
+
"prefix": null,
|
75 |
+
"pretraining_tp": 1,
|
76 |
+
"problem_type": null,
|
77 |
+
"pruned_heads": {},
|
78 |
+
"remove_invalid_values": false,
|
79 |
+
"repetition_penalty": 1.0,
|
80 |
+
"return_dict": true,
|
81 |
+
"return_dict_in_generate": false,
|
82 |
+
"rms_norm_eps": 1e-05,
|
83 |
+
"rope_scaling": {
|
84 |
+
"factor": 2.0,
|
85 |
+
"type": "dynamic"
|
86 |
+
},
|
87 |
+
"rope_theta": 1000000,
|
88 |
+
"sep_token_id": null,
|
89 |
+
"suppress_tokens": null,
|
90 |
+
"task_specific_params": null,
|
91 |
+
"temperature": 1.0,
|
92 |
+
"tf_legacy_loss": false,
|
93 |
+
"tie_encoder_decoder": false,
|
94 |
+
"tie_word_embeddings": false,
|
95 |
+
"tokenizer_class": null,
|
96 |
+
"top_k": 50,
|
97 |
+
"top_p": 1.0,
|
98 |
+
"torch_dtype": "bfloat16",
|
99 |
+
"torchscript": false,
|
100 |
+
"transformers_version": "4.44.0",
|
101 |
+
"typical_p": 1.0,
|
102 |
+
"use_bfloat16": true,
|
103 |
+
"use_cache": true,
|
104 |
+
"vocab_size": 92558
|
105 |
+
},
|
106 |
+
"max_dynamic_patch": 12,
|
107 |
+
"min_dynamic_patch": 1,
|
108 |
+
"model_type": "sa2va_chat",
|
109 |
+
"pad2square": false,
|
110 |
+
"ps_version": "v2",
|
111 |
+
"select_layer": -1,
|
112 |
+
"template": "internlm2_chat",
|
113 |
+
"tie_word_embeddings": false,
|
114 |
+
"torch_dtype": "bfloat16",
|
115 |
+
"transformers_version": null,
|
116 |
+
"use_backbone_lora": 0,
|
117 |
+
"use_llm_lora": 0,
|
118 |
+
"use_thumbnail": true,
|
119 |
+
"vision_config": {
|
120 |
+
"_name_or_path": "",
|
121 |
+
"add_cross_attention": false,
|
122 |
+
"architectures": [
|
123 |
+
"InternVisionModel"
|
124 |
+
],
|
125 |
+
"attention_dropout": 0.0,
|
126 |
+
"bad_words_ids": null,
|
127 |
+
"begin_suppress_tokens": null,
|
128 |
+
"bos_token_id": null,
|
129 |
+
"chunk_size_feed_forward": 0,
|
130 |
+
"cross_attention_hidden_size": null,
|
131 |
+
"decoder_start_token_id": null,
|
132 |
+
"diversity_penalty": 0.0,
|
133 |
+
"do_sample": false,
|
134 |
+
"drop_path_rate": 0.0,
|
135 |
+
"dropout": 0.0,
|
136 |
+
"early_stopping": false,
|
137 |
+
"encoder_no_repeat_ngram_size": 0,
|
138 |
+
"eos_token_id": null,
|
139 |
+
"exponential_decay_length_penalty": null,
|
140 |
+
"finetuning_task": null,
|
141 |
+
"forced_bos_token_id": null,
|
142 |
+
"forced_eos_token_id": null,
|
143 |
+
"hidden_act": "gelu",
|
144 |
+
"hidden_size": 1024,
|
145 |
+
"id2label": {
|
146 |
+
"0": "LABEL_0",
|
147 |
+
"1": "LABEL_1"
|
148 |
+
},
|
149 |
+
"image_size": 448,
|
150 |
+
"initializer_factor": 1.0,
|
151 |
+
"initializer_range": 0.02,
|
152 |
+
"intermediate_size": 4096,
|
153 |
+
"is_decoder": false,
|
154 |
+
"is_encoder_decoder": false,
|
155 |
+
"label2id": {
|
156 |
+
"LABEL_0": 0,
|
157 |
+
"LABEL_1": 1
|
158 |
+
},
|
159 |
+
"layer_norm_eps": 1e-06,
|
160 |
+
"length_penalty": 1.0,
|
161 |
+
"max_length": 20,
|
162 |
+
"min_length": 0,
|
163 |
+
"model_type": "intern_vit_6b",
|
164 |
+
"no_repeat_ngram_size": 0,
|
165 |
+
"norm_type": "layer_norm",
|
166 |
+
"num_attention_heads": 16,
|
167 |
+
"num_beam_groups": 1,
|
168 |
+
"num_beams": 1,
|
169 |
+
"num_channels": 3,
|
170 |
+
"num_hidden_layers": 24,
|
171 |
+
"num_return_sequences": 1,
|
172 |
+
"output_attentions": false,
|
173 |
+
"output_hidden_states": false,
|
174 |
+
"output_scores": false,
|
175 |
+
"pad_token_id": null,
|
176 |
+
"patch_size": 14,
|
177 |
+
"prefix": null,
|
178 |
+
"problem_type": null,
|
179 |
+
"pruned_heads": {},
|
180 |
+
"qk_normalization": false,
|
181 |
+
"qkv_bias": true,
|
182 |
+
"remove_invalid_values": false,
|
183 |
+
"repetition_penalty": 1.0,
|
184 |
+
"return_dict": true,
|
185 |
+
"return_dict_in_generate": false,
|
186 |
+
"sep_token_id": null,
|
187 |
+
"suppress_tokens": null,
|
188 |
+
"task_specific_params": null,
|
189 |
+
"temperature": 1.0,
|
190 |
+
"tf_legacy_loss": false,
|
191 |
+
"tie_encoder_decoder": false,
|
192 |
+
"tie_word_embeddings": true,
|
193 |
+
"tokenizer_class": null,
|
194 |
+
"top_k": 50,
|
195 |
+
"top_p": 1.0,
|
196 |
+
"torch_dtype": "bfloat16",
|
197 |
+
"torchscript": false,
|
198 |
+
"transformers_version": "4.44.0",
|
199 |
+
"typical_p": 1.0,
|
200 |
+
"use_bfloat16": true,
|
201 |
+
"use_flash_attn": true
|
202 |
+
}
|
203 |
+
}
|
configuration_intern_vit.py
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# --------------------------------------------------------
|
2 |
+
# InternVL
|
3 |
+
# Copyright (c) 2024 OpenGVLab
|
4 |
+
# Licensed under The MIT License [see LICENSE for details]
|
5 |
+
# --------------------------------------------------------
|
6 |
+
|
7 |
+
import os
|
8 |
+
from typing import Union
|
9 |
+
|
10 |
+
from transformers.configuration_utils import PretrainedConfig
|
11 |
+
from transformers.utils import logging
|
12 |
+
|
13 |
+
logger = logging.get_logger(__name__)
|
14 |
+
|
15 |
+
|
16 |
+
class InternVisionConfig(PretrainedConfig):
|
17 |
+
r"""
|
18 |
+
This is the configuration class to store the configuration of a [`InternVisionModel`]. It is used to
|
19 |
+
instantiate a vision encoder according to the specified arguments, defining the model architecture.
|
20 |
+
|
21 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
22 |
+
documentation from [`PretrainedConfig`] for more information.
|
23 |
+
|
24 |
+
Args:
|
25 |
+
num_channels (`int`, *optional*, defaults to 3):
|
26 |
+
Number of color channels in the input images (e.g., 3 for RGB).
|
27 |
+
patch_size (`int`, *optional*, defaults to 14):
|
28 |
+
The size (resolution) of each patch.
|
29 |
+
image_size (`int`, *optional*, defaults to 224):
|
30 |
+
The size (resolution) of each image.
|
31 |
+
qkv_bias (`bool`, *optional*, defaults to `False`):
|
32 |
+
Whether to add a bias to the queries and values in the self-attention layers.
|
33 |
+
hidden_size (`int`, *optional*, defaults to 3200):
|
34 |
+
Dimensionality of the encoder layers and the pooler layer.
|
35 |
+
num_attention_heads (`int`, *optional*, defaults to 25):
|
36 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
37 |
+
intermediate_size (`int`, *optional*, defaults to 12800):
|
38 |
+
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
39 |
+
qk_normalization (`bool`, *optional*, defaults to `True`):
|
40 |
+
Whether to normalize the queries and keys in the self-attention layers.
|
41 |
+
num_hidden_layers (`int`, *optional*, defaults to 48):
|
42 |
+
Number of hidden layers in the Transformer encoder.
|
43 |
+
use_flash_attn (`bool`, *optional*, defaults to `True`):
|
44 |
+
Whether to use flash attention mechanism.
|
45 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
|
46 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
47 |
+
`"relu"`, `"selu"` and `"gelu_new"` ``"gelu"` are supported.
|
48 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-6):
|
49 |
+
The epsilon used by the layer normalization layers.
|
50 |
+
dropout (`float`, *optional*, defaults to 0.0):
|
51 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
52 |
+
drop_path_rate (`float`, *optional*, defaults to 0.0):
|
53 |
+
Dropout rate for stochastic depth.
|
54 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
55 |
+
The dropout ratio for the attention probabilities.
|
56 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
57 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
58 |
+
initializer_factor (`float`, *optional*, defaults to 0.1):
|
59 |
+
A factor for layer scale.
|
60 |
+
"""
|
61 |
+
|
62 |
+
model_type = 'intern_vit_6b'
|
63 |
+
|
64 |
+
def __init__(
|
65 |
+
self,
|
66 |
+
num_channels=3,
|
67 |
+
patch_size=14,
|
68 |
+
image_size=224,
|
69 |
+
qkv_bias=False,
|
70 |
+
hidden_size=3200,
|
71 |
+
num_attention_heads=25,
|
72 |
+
intermediate_size=12800,
|
73 |
+
qk_normalization=True,
|
74 |
+
num_hidden_layers=48,
|
75 |
+
use_flash_attn=True,
|
76 |
+
hidden_act='gelu',
|
77 |
+
norm_type='rms_norm',
|
78 |
+
layer_norm_eps=1e-6,
|
79 |
+
dropout=0.0,
|
80 |
+
drop_path_rate=0.0,
|
81 |
+
attention_dropout=0.0,
|
82 |
+
initializer_range=0.02,
|
83 |
+
initializer_factor=0.1,
|
84 |
+
**kwargs,
|
85 |
+
):
|
86 |
+
super().__init__(**kwargs)
|
87 |
+
|
88 |
+
self.hidden_size = hidden_size
|
89 |
+
self.intermediate_size = intermediate_size
|
90 |
+
self.dropout = dropout
|
91 |
+
self.drop_path_rate = drop_path_rate
|
92 |
+
self.num_hidden_layers = num_hidden_layers
|
93 |
+
self.num_attention_heads = num_attention_heads
|
94 |
+
self.num_channels = num_channels
|
95 |
+
self.patch_size = patch_size
|
96 |
+
self.image_size = image_size
|
97 |
+
self.initializer_range = initializer_range
|
98 |
+
self.initializer_factor = initializer_factor
|
99 |
+
self.attention_dropout = attention_dropout
|
100 |
+
self.layer_norm_eps = layer_norm_eps
|
101 |
+
self.hidden_act = hidden_act
|
102 |
+
self.norm_type = norm_type
|
103 |
+
self.qkv_bias = qkv_bias
|
104 |
+
self.qk_normalization = qk_normalization
|
105 |
+
self.use_flash_attn = use_flash_attn
|
106 |
+
|
107 |
+
@classmethod
|
108 |
+
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> 'PretrainedConfig':
|
109 |
+
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
110 |
+
|
111 |
+
if 'vision_config' in config_dict:
|
112 |
+
config_dict = config_dict['vision_config']
|
113 |
+
|
114 |
+
if 'model_type' in config_dict and hasattr(cls, 'model_type') and config_dict['model_type'] != cls.model_type:
|
115 |
+
logger.warning(
|
116 |
+
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
117 |
+
f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.'
|
118 |
+
)
|
119 |
+
|
120 |
+
return cls.from_dict(config_dict, **kwargs)
|
configuration_internlm2.py
ADDED
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
|
2 |
+
#
|
3 |
+
# This code is based on transformers/src/transformers/models/llama/configuration_llama.py
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
""" InternLM2 model configuration"""
|
17 |
+
|
18 |
+
from transformers.configuration_utils import PretrainedConfig
|
19 |
+
from transformers.utils import logging
|
20 |
+
|
21 |
+
logger = logging.get_logger(__name__)
|
22 |
+
|
23 |
+
INTERNLM2_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
|
24 |
+
|
25 |
+
|
26 |
+
# Modified from transformers.model.llama.configuration_llama.LlamaConfig
|
27 |
+
class InternLM2Config(PretrainedConfig):
|
28 |
+
r"""
|
29 |
+
This is the configuration class to store the configuration of a [`InternLM2Model`]. It is used to instantiate
|
30 |
+
an InternLM2 model according to the specified arguments, defining the model architecture. Instantiating a
|
31 |
+
configuration with the defaults will yield a similar configuration to that of the InternLM2-7B.
|
32 |
+
|
33 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
34 |
+
documentation from [`PretrainedConfig`] for more information.
|
35 |
+
|
36 |
+
|
37 |
+
Args:
|
38 |
+
vocab_size (`int`, *optional*, defaults to 32000):
|
39 |
+
Vocabulary size of the InternLM2 model. Defines the number of different tokens that can be represented by the
|
40 |
+
`inputs_ids` passed when calling [`InternLM2Model`]
|
41 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
42 |
+
Dimension of the hidden representations.
|
43 |
+
intermediate_size (`int`, *optional*, defaults to 11008):
|
44 |
+
Dimension of the MLP representations.
|
45 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
46 |
+
Number of hidden layers in the Transformer encoder.
|
47 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
48 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
49 |
+
num_key_value_heads (`int`, *optional*):
|
50 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
51 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
52 |
+
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
53 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
54 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
55 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
56 |
+
`num_attention_heads`.
|
57 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
58 |
+
The non-linear activation function (function or string) in the decoder.
|
59 |
+
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
60 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
61 |
+
just in case (e.g., 512 or 1024 or 2048).
|
62 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
63 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
64 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-12):
|
65 |
+
The epsilon used by the rms normalization layers.
|
66 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
67 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
68 |
+
relevant if `config.is_decoder=True`.
|
69 |
+
tie_word_embeddings(`bool`, *optional*, defaults to `False`):
|
70 |
+
Whether to tie weight embeddings
|
71 |
+
Example:
|
72 |
+
|
73 |
+
"""
|
74 |
+
model_type = 'internlm2'
|
75 |
+
_auto_class = 'AutoConfig'
|
76 |
+
|
77 |
+
def __init__( # pylint: disable=W0102
|
78 |
+
self,
|
79 |
+
vocab_size=103168,
|
80 |
+
hidden_size=4096,
|
81 |
+
intermediate_size=11008,
|
82 |
+
num_hidden_layers=32,
|
83 |
+
num_attention_heads=32,
|
84 |
+
num_key_value_heads=None,
|
85 |
+
hidden_act='silu',
|
86 |
+
max_position_embeddings=2048,
|
87 |
+
initializer_range=0.02,
|
88 |
+
rms_norm_eps=1e-6,
|
89 |
+
use_cache=True,
|
90 |
+
pad_token_id=0,
|
91 |
+
bos_token_id=1,
|
92 |
+
eos_token_id=2,
|
93 |
+
tie_word_embeddings=False,
|
94 |
+
bias=True,
|
95 |
+
rope_theta=10000,
|
96 |
+
rope_scaling=None,
|
97 |
+
attn_implementation='eager',
|
98 |
+
**kwargs,
|
99 |
+
):
|
100 |
+
self.vocab_size = vocab_size
|
101 |
+
self.max_position_embeddings = max_position_embeddings
|
102 |
+
self.hidden_size = hidden_size
|
103 |
+
self.intermediate_size = intermediate_size
|
104 |
+
self.num_hidden_layers = num_hidden_layers
|
105 |
+
self.num_attention_heads = num_attention_heads
|
106 |
+
self.bias = bias
|
107 |
+
|
108 |
+
if num_key_value_heads is None:
|
109 |
+
num_key_value_heads = num_attention_heads
|
110 |
+
self.num_key_value_heads = num_key_value_heads
|
111 |
+
|
112 |
+
self.hidden_act = hidden_act
|
113 |
+
self.initializer_range = initializer_range
|
114 |
+
self.rms_norm_eps = rms_norm_eps
|
115 |
+
self.use_cache = use_cache
|
116 |
+
self.rope_theta = rope_theta
|
117 |
+
self.rope_scaling = rope_scaling
|
118 |
+
self._rope_scaling_validation()
|
119 |
+
|
120 |
+
self.attn_implementation = attn_implementation
|
121 |
+
if self.attn_implementation is None:
|
122 |
+
self.attn_implementation = 'eager'
|
123 |
+
super().__init__(
|
124 |
+
pad_token_id=pad_token_id,
|
125 |
+
bos_token_id=bos_token_id,
|
126 |
+
eos_token_id=eos_token_id,
|
127 |
+
tie_word_embeddings=tie_word_embeddings,
|
128 |
+
**kwargs,
|
129 |
+
)
|
130 |
+
|
131 |
+
def _rope_scaling_validation(self):
|
132 |
+
"""
|
133 |
+
Validate the `rope_scaling` configuration.
|
134 |
+
"""
|
135 |
+
if self.rope_scaling is None:
|
136 |
+
return
|
137 |
+
|
138 |
+
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
|
139 |
+
raise ValueError(
|
140 |
+
'`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, '
|
141 |
+
f'got {self.rope_scaling}'
|
142 |
+
)
|
143 |
+
rope_scaling_type = self.rope_scaling.get('type', None)
|
144 |
+
rope_scaling_factor = self.rope_scaling.get('factor', None)
|
145 |
+
if rope_scaling_type is None or rope_scaling_type not in ['linear', 'dynamic']:
|
146 |
+
raise ValueError(
|
147 |
+
f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
|
148 |
+
)
|
149 |
+
if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor < 1.0:
|
150 |
+
raise ValueError(f"`rope_scaling`'s factor field must be a float >= 1, got {rope_scaling_factor}")
|
configuration_phi3.py
ADDED
@@ -0,0 +1,211 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License atd
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
""" Phi-3 model configuration"""
|
16 |
+
|
17 |
+
|
18 |
+
from transformers.configuration_utils import PretrainedConfig
|
19 |
+
from transformers.utils import logging
|
20 |
+
|
21 |
+
logger = logging.get_logger(__name__)
|
22 |
+
|
23 |
+
PHI3_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
24 |
+
'microsoft/Phi-3-mini-4k-instruct': 'https://huggingface.co/microsoft/Phi-3-mini-4k-instruct/resolve/main/config.json',
|
25 |
+
'microsoft/Phi-3-mini-128k-instruct': 'https://huggingface.co/microsoft/Phi-3-mini-128k-instruct/resolve/main/config.json',
|
26 |
+
}
|
27 |
+
|
28 |
+
|
29 |
+
class Phi3Config(PretrainedConfig):
|
30 |
+
r"""
|
31 |
+
This is the configuration class to store the configuration of a [`Phi3Model`]. It is used to instantiate a Phi-3
|
32 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
33 |
+
defaults will yield a similar configuration to that of the
|
34 |
+
[microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct).
|
35 |
+
|
36 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
37 |
+
documentation from [`PretrainedConfig`] for more information.
|
38 |
+
|
39 |
+
Args:
|
40 |
+
vocab_size (`int`, *optional*, defaults to 32064):
|
41 |
+
Vocabulary size of the Phi-3 model. Defines the number of different tokens that can be represented by the
|
42 |
+
`inputs_ids` passed when calling [`Phi3Model`].
|
43 |
+
hidden_size (`int`, *optional*, defaults to 3072):
|
44 |
+
Dimension of the hidden representations.
|
45 |
+
intermediate_size (`int`, *optional*, defaults to 8192):
|
46 |
+
Dimension of the MLP representations.
|
47 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
48 |
+
Number of hidden layers in the Transformer decoder.
|
49 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
50 |
+
Number of attention heads for each attention layer in the Transformer decoder.
|
51 |
+
num_key_value_heads (`int`, *optional*):
|
52 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
53 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
54 |
+
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
55 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
56 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
57 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
58 |
+
`num_attention_heads`.
|
59 |
+
resid_pdrop (`float`, *optional*, defaults to 0.0):
|
60 |
+
Dropout probability for mlp outputs.
|
61 |
+
embd_pdrop (`int`, *optional*, defaults to 0.0):
|
62 |
+
The dropout ratio for the embeddings.
|
63 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
64 |
+
The dropout ratio after computing the attention scores.
|
65 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
66 |
+
The non-linear activation function (function or string) in the decoder.
|
67 |
+
max_position_embeddings (`int`, *optional*, defaults to 4096):
|
68 |
+
The maximum sequence length that this model might ever be used with.
|
69 |
+
original_max_position_embeddings (`int`, *optional*, defaults to 4096):
|
70 |
+
The maximum sequence length that this model was trained with. This is used to determine the size of the
|
71 |
+
original RoPE embeddings when using long scaling.
|
72 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
73 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
74 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-05):
|
75 |
+
The epsilon value used for the RMSNorm.
|
76 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
77 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
78 |
+
relevant if `config.is_decoder=True`. Whether to tie weight embeddings or not.
|
79 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
80 |
+
Whether to tie weight embeddings
|
81 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
82 |
+
The base period of the RoPE embeddings.
|
83 |
+
rope_scaling (`dict`, *optional*):
|
84 |
+
The scaling strategy for the RoPE embeddings. If `None`, no scaling is applied. If a dictionary, it must
|
85 |
+
contain the following keys: `type`, `short_factor` and `long_factor`. The `type` must be either `su` or `yarn` and
|
86 |
+
the `short_factor` and `long_factor` must be lists of numbers with the same length as the hidden size
|
87 |
+
divided by the number of attention heads divided by 2.
|
88 |
+
bos_token_id (`int`, *optional*, defaults to 1):
|
89 |
+
The id of the "beginning-of-sequence" token.
|
90 |
+
eos_token_id (`int`, *optional*, defaults to 32000):
|
91 |
+
The id of the "end-of-sequence" token.
|
92 |
+
pad_token_id (`int`, *optional*, defaults to 32000):
|
93 |
+
The id of the padding token.
|
94 |
+
sliding_window (`int`, *optional*):
|
95 |
+
Sliding window attention window size. If `None`, no sliding window is applied.
|
96 |
+
|
97 |
+
Example:
|
98 |
+
|
99 |
+
```python
|
100 |
+
>>> from transformers import Phi3Model, Phi3Config
|
101 |
+
|
102 |
+
>>> # Initializing a Phi-3 style configuration
|
103 |
+
>>> configuration = Phi3Config.from_pretrained("microsoft/Phi-3-mini-4k-instruct")
|
104 |
+
|
105 |
+
>>> # Initializing a model from the configuration
|
106 |
+
>>> model = Phi3Model(configuration)
|
107 |
+
|
108 |
+
>>> # Accessing the model configuration
|
109 |
+
>>> configuration = model.config
|
110 |
+
```"""
|
111 |
+
|
112 |
+
model_type = 'phi3'
|
113 |
+
keys_to_ignore_at_inference = ['past_key_values']
|
114 |
+
|
115 |
+
def __init__(
|
116 |
+
self,
|
117 |
+
vocab_size=32064,
|
118 |
+
hidden_size=3072,
|
119 |
+
intermediate_size=8192,
|
120 |
+
num_hidden_layers=32,
|
121 |
+
num_attention_heads=32,
|
122 |
+
num_key_value_heads=None,
|
123 |
+
resid_pdrop=0.0,
|
124 |
+
embd_pdrop=0.0,
|
125 |
+
attention_dropout=0.0,
|
126 |
+
hidden_act='silu',
|
127 |
+
max_position_embeddings=4096,
|
128 |
+
original_max_position_embeddings=4096,
|
129 |
+
initializer_range=0.02,
|
130 |
+
rms_norm_eps=1e-5,
|
131 |
+
use_cache=True,
|
132 |
+
tie_word_embeddings=False,
|
133 |
+
rope_theta=10000.0,
|
134 |
+
rope_scaling=None,
|
135 |
+
bos_token_id=1,
|
136 |
+
eos_token_id=32000,
|
137 |
+
pad_token_id=32000,
|
138 |
+
sliding_window=None,
|
139 |
+
**kwargs,
|
140 |
+
):
|
141 |
+
self.vocab_size = vocab_size
|
142 |
+
self.hidden_size = hidden_size
|
143 |
+
self.intermediate_size = intermediate_size
|
144 |
+
self.num_hidden_layers = num_hidden_layers
|
145 |
+
self.num_attention_heads = num_attention_heads
|
146 |
+
|
147 |
+
if num_key_value_heads is None:
|
148 |
+
num_key_value_heads = num_attention_heads
|
149 |
+
|
150 |
+
self.num_key_value_heads = num_key_value_heads
|
151 |
+
self.resid_pdrop = resid_pdrop
|
152 |
+
self.embd_pdrop = embd_pdrop
|
153 |
+
self.attention_dropout = attention_dropout
|
154 |
+
self.hidden_act = hidden_act
|
155 |
+
self.max_position_embeddings = max_position_embeddings
|
156 |
+
self.original_max_position_embeddings = original_max_position_embeddings
|
157 |
+
self.initializer_range = initializer_range
|
158 |
+
self.rms_norm_eps = rms_norm_eps
|
159 |
+
self.use_cache = use_cache
|
160 |
+
self.rope_theta = rope_theta
|
161 |
+
self.rope_scaling = rope_scaling
|
162 |
+
self._rope_scaling_validation()
|
163 |
+
self.sliding_window = sliding_window
|
164 |
+
|
165 |
+
super().__init__(
|
166 |
+
bos_token_id=bos_token_id,
|
167 |
+
eos_token_id=eos_token_id,
|
168 |
+
pad_token_id=pad_token_id,
|
169 |
+
tie_word_embeddings=tie_word_embeddings,
|
170 |
+
**kwargs,
|
171 |
+
)
|
172 |
+
|
173 |
+
def _rope_scaling_validation(self):
|
174 |
+
"""
|
175 |
+
Validate the `rope_scaling` configuration.
|
176 |
+
"""
|
177 |
+
if self.rope_scaling is None:
|
178 |
+
return
|
179 |
+
|
180 |
+
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 3:
|
181 |
+
raise ValueError(
|
182 |
+
'`rope_scaling` must be a dictionary with three fields, `type`, `short_factor` and `long_factor`, '
|
183 |
+
f'got {self.rope_scaling}'
|
184 |
+
)
|
185 |
+
rope_scaling_type = self.rope_scaling.get('type', None)
|
186 |
+
rope_scaling_short_factor = self.rope_scaling.get('short_factor', None)
|
187 |
+
rope_scaling_long_factor = self.rope_scaling.get('long_factor', None)
|
188 |
+
if rope_scaling_type is None or rope_scaling_type not in ['su', 'yarn']:
|
189 |
+
raise ValueError(f"`rope_scaling`'s type field must be one of ['su', 'yarn'], got {rope_scaling_type}")
|
190 |
+
if not (
|
191 |
+
isinstance(rope_scaling_short_factor, list)
|
192 |
+
and all(isinstance(x, (int, float)) for x in rope_scaling_short_factor)
|
193 |
+
):
|
194 |
+
raise ValueError(
|
195 |
+
f"`rope_scaling`'s short_factor field must be a list of numbers, got {rope_scaling_short_factor}"
|
196 |
+
)
|
197 |
+
if not len(rope_scaling_short_factor) == self.hidden_size // self.num_attention_heads // 2:
|
198 |
+
raise ValueError(
|
199 |
+
f"`rope_scaling`'s short_factor field must have length {self.hidden_size // self.num_attention_heads // 2}, got {len(rope_scaling_short_factor)}"
|
200 |
+
)
|
201 |
+
if not (
|
202 |
+
isinstance(rope_scaling_long_factor, list)
|
203 |
+
and all(isinstance(x, (int, float)) for x in rope_scaling_long_factor)
|
204 |
+
):
|
205 |
+
raise ValueError(
|
206 |
+
f"`rope_scaling`'s long_factor field must be a list of numbers, got {rope_scaling_long_factor}"
|
207 |
+
)
|
208 |
+
if not len(rope_scaling_long_factor) == self.hidden_size // self.num_attention_heads // 2:
|
209 |
+
raise ValueError(
|
210 |
+
f"`rope_scaling`'s long_factor field must have length {self.hidden_size // self.num_attention_heads // 2}, got {len(rope_scaling_long_factor)}"
|
211 |
+
)
|
configuration_sa2va_chat.py
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# --------------------------------------------------------
|
2 |
+
# InternVL
|
3 |
+
# Copyright (c) 2024 OpenGVLab
|
4 |
+
# Licensed under The MIT License [see LICENSE for details]
|
5 |
+
# --------------------------------------------------------
|
6 |
+
|
7 |
+
import copy
|
8 |
+
|
9 |
+
from .configuration_internlm2 import InternLM2Config
|
10 |
+
from .configuration_phi3 import Phi3Config
|
11 |
+
from transformers import AutoConfig, LlamaConfig, Qwen2Config
|
12 |
+
from transformers.configuration_utils import PretrainedConfig
|
13 |
+
from transformers.utils import logging
|
14 |
+
|
15 |
+
from .configuration_intern_vit import InternVisionConfig
|
16 |
+
|
17 |
+
logger = logging.get_logger(__name__)
|
18 |
+
|
19 |
+
|
20 |
+
class Sa2VAChatConfig(PretrainedConfig):
|
21 |
+
model_type = 'sa2va_chat'
|
22 |
+
is_composition = True
|
23 |
+
|
24 |
+
def __init__(
|
25 |
+
self,
|
26 |
+
vision_config=None,
|
27 |
+
llm_config=None,
|
28 |
+
use_backbone_lora=0,
|
29 |
+
use_llm_lora=0,
|
30 |
+
pad2square=False,
|
31 |
+
select_layer=-1,
|
32 |
+
force_image_size=None,
|
33 |
+
downsample_ratio=0.5,
|
34 |
+
template=None,
|
35 |
+
dynamic_image_size=False,
|
36 |
+
use_thumbnail=False,
|
37 |
+
ps_version='v1',
|
38 |
+
min_dynamic_patch=1,
|
39 |
+
max_dynamic_patch=6,
|
40 |
+
**kwargs):
|
41 |
+
super().__init__(**kwargs)
|
42 |
+
|
43 |
+
if vision_config is None:
|
44 |
+
vision_config = {}
|
45 |
+
logger.info('vision_config is None. Initializing the InternVisionConfig with default values.')
|
46 |
+
|
47 |
+
if llm_config is None:
|
48 |
+
llm_config = {}
|
49 |
+
logger.info('llm_config is None. Initializing the LlamaConfig config with default values (`LlamaConfig`).')
|
50 |
+
|
51 |
+
self.vision_config = InternVisionConfig(**vision_config)
|
52 |
+
if llm_config['architectures'][0] == 'LlamaForCausalLM':
|
53 |
+
self.llm_config = LlamaConfig(**llm_config)
|
54 |
+
elif llm_config['architectures'][0] == 'InternLM2ForCausalLM':
|
55 |
+
self.llm_config = InternLM2Config(**llm_config)
|
56 |
+
elif llm_config['architectures'][0] == 'Phi3ForCausalLM':
|
57 |
+
self.llm_config = Phi3Config(**llm_config)
|
58 |
+
elif llm_config['architectures'][0] == 'Qwen2ForCausalLM':
|
59 |
+
self.llm_config = Qwen2Config(**llm_config)
|
60 |
+
else:
|
61 |
+
raise ValueError('Unsupported architecture: {}'.format(llm_config['architectures'][0]))
|
62 |
+
self.use_backbone_lora = use_backbone_lora
|
63 |
+
self.use_llm_lora = use_llm_lora
|
64 |
+
self.pad2square = pad2square
|
65 |
+
self.select_layer = select_layer
|
66 |
+
self.force_image_size = force_image_size
|
67 |
+
self.downsample_ratio = downsample_ratio
|
68 |
+
self.template = template
|
69 |
+
self.dynamic_image_size = dynamic_image_size
|
70 |
+
self.use_thumbnail = use_thumbnail
|
71 |
+
self.ps_version = ps_version # pixel shuffle version
|
72 |
+
self.min_dynamic_patch = min_dynamic_patch
|
73 |
+
self.max_dynamic_patch = max_dynamic_patch
|
74 |
+
|
75 |
+
self.hidden_size = self.llm_config.hidden_size
|
76 |
+
self.tie_word_embeddings = False
|
77 |
+
|
78 |
+
logger.info(f'vision_select_layer: {self.select_layer}')
|
79 |
+
logger.info(f'ps_version: {self.ps_version}')
|
80 |
+
logger.info(f'min_dynamic_patch: {self.min_dynamic_patch}')
|
81 |
+
logger.info(f'max_dynamic_patch: {self.max_dynamic_patch}')
|
82 |
+
|
83 |
+
def to_dict(self):
|
84 |
+
"""
|
85 |
+
Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
|
86 |
+
|
87 |
+
Returns:
|
88 |
+
`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
|
89 |
+
"""
|
90 |
+
output = copy.deepcopy(self.__dict__)
|
91 |
+
output['vision_config'] = self.vision_config.to_dict()
|
92 |
+
output['llm_config'] = self.llm_config.to_dict()
|
93 |
+
output['model_type'] = self.__class__.model_type
|
94 |
+
output['use_backbone_lora'] = self.use_backbone_lora
|
95 |
+
output['use_llm_lora'] = self.use_llm_lora
|
96 |
+
output['pad2square'] = self.pad2square
|
97 |
+
output['select_layer'] = self.select_layer
|
98 |
+
output['force_image_size'] = self.force_image_size
|
99 |
+
output['downsample_ratio'] = self.downsample_ratio
|
100 |
+
output['template'] = self.template
|
101 |
+
output['dynamic_image_size'] = self.dynamic_image_size
|
102 |
+
output['use_thumbnail'] = self.use_thumbnail
|
103 |
+
output['ps_version'] = self.ps_version
|
104 |
+
output['min_dynamic_patch'] = self.min_dynamic_patch
|
105 |
+
output['max_dynamic_patch'] = self.max_dynamic_patch
|
106 |
+
|
107 |
+
return output
|
flash_attention.py
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# https://github.com/Dao-AILab/flash-attention/blob/v0.2.8/flash_attn/flash_attention.py
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
from einops import rearrange
|
5 |
+
|
6 |
+
try: # v1
|
7 |
+
from flash_attn.flash_attn_interface import \
|
8 |
+
flash_attn_unpadded_qkvpacked_func
|
9 |
+
except: # v2
|
10 |
+
from flash_attn.flash_attn_interface import flash_attn_varlen_qkvpacked_func as flash_attn_unpadded_qkvpacked_func
|
11 |
+
|
12 |
+
from flash_attn.bert_padding import pad_input, unpad_input
|
13 |
+
|
14 |
+
|
15 |
+
class FlashAttention(nn.Module):
|
16 |
+
"""Implement the scaled dot product attention with softmax.
|
17 |
+
Arguments
|
18 |
+
---------
|
19 |
+
softmax_scale: The temperature to use for the softmax attention.
|
20 |
+
(default: 1/sqrt(d_keys) where d_keys is computed at
|
21 |
+
runtime)
|
22 |
+
attention_dropout: The dropout rate to apply to the attention
|
23 |
+
(default: 0.0)
|
24 |
+
"""
|
25 |
+
|
26 |
+
def __init__(self, softmax_scale=None, attention_dropout=0.0, device=None, dtype=None):
|
27 |
+
super().__init__()
|
28 |
+
self.softmax_scale = softmax_scale
|
29 |
+
self.dropout_p = attention_dropout
|
30 |
+
|
31 |
+
def forward(self, qkv, key_padding_mask=None, causal=False, cu_seqlens=None,
|
32 |
+
max_s=None, need_weights=False):
|
33 |
+
"""Implements the multihead softmax attention.
|
34 |
+
Arguments
|
35 |
+
---------
|
36 |
+
qkv: The tensor containing the query, key, and value. (B, S, 3, H, D) if key_padding_mask is None
|
37 |
+
if unpadded: (nnz, 3, h, d)
|
38 |
+
key_padding_mask: a bool tensor of shape (B, S)
|
39 |
+
"""
|
40 |
+
assert not need_weights
|
41 |
+
assert qkv.dtype in [torch.float16, torch.bfloat16]
|
42 |
+
assert qkv.is_cuda
|
43 |
+
|
44 |
+
if cu_seqlens is None:
|
45 |
+
batch_size = qkv.shape[0]
|
46 |
+
seqlen = qkv.shape[1]
|
47 |
+
if key_padding_mask is None:
|
48 |
+
qkv = rearrange(qkv, 'b s ... -> (b s) ...')
|
49 |
+
max_s = seqlen
|
50 |
+
cu_seqlens = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32,
|
51 |
+
device=qkv.device)
|
52 |
+
output = flash_attn_unpadded_qkvpacked_func(
|
53 |
+
qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
|
54 |
+
softmax_scale=self.softmax_scale, causal=causal
|
55 |
+
)
|
56 |
+
output = rearrange(output, '(b s) ... -> b s ...', b=batch_size)
|
57 |
+
else:
|
58 |
+
nheads = qkv.shape[-2]
|
59 |
+
x = rearrange(qkv, 'b s three h d -> b s (three h d)')
|
60 |
+
x_unpad, indices, cu_seqlens, max_s = unpad_input(x, key_padding_mask)
|
61 |
+
x_unpad = rearrange(x_unpad, 'nnz (three h d) -> nnz three h d', three=3, h=nheads)
|
62 |
+
output_unpad = flash_attn_unpadded_qkvpacked_func(
|
63 |
+
x_unpad, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
|
64 |
+
softmax_scale=self.softmax_scale, causal=causal
|
65 |
+
)
|
66 |
+
output = rearrange(pad_input(rearrange(output_unpad, 'nnz h d -> nnz (h d)'),
|
67 |
+
indices, batch_size, seqlen),
|
68 |
+
'b s (h d) -> b s h d', h=nheads)
|
69 |
+
else:
|
70 |
+
assert max_s is not None
|
71 |
+
output = flash_attn_unpadded_qkvpacked_func(
|
72 |
+
qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
|
73 |
+
softmax_scale=self.softmax_scale, causal=causal
|
74 |
+
)
|
75 |
+
|
76 |
+
return output, None
|
generation_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"transformers_version": "4.44.0"
|
4 |
+
}
|
model-00001-of-00007.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:07e05f76347bda89747143a1af7113dd9d524106d47523a6a4c8e62456b3ce5f
|
3 |
+
size 4909654024
|
model-00002-of-00007.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:67653854c0c699c1bd748ad6cb978e8dc2ab718d1dbf650444cc401e63716c9a
|
3 |
+
size 4832006776
|
model-00003-of-00007.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3419fc26d588e89d7d4066655283cb205ceba1b3b177dc74ba06b7aead0fa479
|
3 |
+
size 4999812240
|
model-00004-of-00007.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c60245843bf74340f23a1542de08fda547764c9cc24a40a19dd9d2b227bcb9e5
|
3 |
+
size 4999812240
|
model-00005-of-00007.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fca07645b64b8b459b8bea06a4d360f5d193ab1fd7982c12aa017737ff5caddf
|
3 |
+
size 4832006816
|
model-00006-of-00007.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2ddb1c44ff9872f5cd2ce4d93a5ae4d8a9f41040f73439d6db4636a0b9e635da
|
3 |
+
size 4999812240
|
model-00007-of-00007.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:000545c73248c0feebb04a410ef511d40ab8e730e496e0bb788e079341894e94
|
3 |
+
size 3089740528
|
model.safetensors.index.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
modeling_intern_vit.py
ADDED
@@ -0,0 +1,364 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# --------------------------------------------------------
|
2 |
+
# InternVL
|
3 |
+
# Copyright (c) 2024 OpenGVLab
|
4 |
+
# Licensed under The MIT License [see LICENSE for details]
|
5 |
+
# --------------------------------------------------------
|
6 |
+
|
7 |
+
from typing import Optional, Tuple, Union
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import torch.nn.functional as F
|
11 |
+
import torch.utils.checkpoint
|
12 |
+
from einops import rearrange
|
13 |
+
from timm.models.layers import DropPath
|
14 |
+
from torch import nn
|
15 |
+
from transformers.activations import ACT2FN
|
16 |
+
from transformers.modeling_outputs import (BaseModelOutput,
|
17 |
+
BaseModelOutputWithPooling)
|
18 |
+
from transformers.modeling_utils import PreTrainedModel
|
19 |
+
from transformers.utils import logging
|
20 |
+
|
21 |
+
from .configuration_intern_vit import InternVisionConfig
|
22 |
+
|
23 |
+
try:
|
24 |
+
from .flash_attention import FlashAttention
|
25 |
+
has_flash_attn = True
|
26 |
+
except:
|
27 |
+
print('FlashAttention is not installed.')
|
28 |
+
has_flash_attn = False
|
29 |
+
|
30 |
+
logger = logging.get_logger(__name__)
|
31 |
+
|
32 |
+
|
33 |
+
class InternRMSNorm(nn.Module):
|
34 |
+
def __init__(self, hidden_size, eps=1e-6):
|
35 |
+
super().__init__()
|
36 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
37 |
+
self.variance_epsilon = eps
|
38 |
+
|
39 |
+
def forward(self, hidden_states):
|
40 |
+
input_dtype = hidden_states.dtype
|
41 |
+
hidden_states = hidden_states.to(torch.float32)
|
42 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
43 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
44 |
+
return self.weight * hidden_states.to(input_dtype)
|
45 |
+
|
46 |
+
|
47 |
+
try:
|
48 |
+
from apex.normalization import FusedRMSNorm
|
49 |
+
|
50 |
+
InternRMSNorm = FusedRMSNorm # noqa
|
51 |
+
|
52 |
+
logger.info('Discovered apex.normalization.FusedRMSNorm - will use it instead of InternRMSNorm')
|
53 |
+
except ImportError:
|
54 |
+
# using the normal InternRMSNorm
|
55 |
+
pass
|
56 |
+
except Exception:
|
57 |
+
logger.warning('discovered apex but it failed to load, falling back to InternRMSNorm')
|
58 |
+
pass
|
59 |
+
|
60 |
+
|
61 |
+
NORM2FN = {
|
62 |
+
'rms_norm': InternRMSNorm,
|
63 |
+
'layer_norm': nn.LayerNorm,
|
64 |
+
}
|
65 |
+
|
66 |
+
|
67 |
+
class InternVisionEmbeddings(nn.Module):
|
68 |
+
def __init__(self, config: InternVisionConfig):
|
69 |
+
super().__init__()
|
70 |
+
self.config = config
|
71 |
+
self.embed_dim = config.hidden_size
|
72 |
+
self.image_size = config.image_size
|
73 |
+
self.patch_size = config.patch_size
|
74 |
+
|
75 |
+
self.class_embedding = nn.Parameter(
|
76 |
+
torch.randn(1, 1, self.embed_dim),
|
77 |
+
)
|
78 |
+
|
79 |
+
self.patch_embedding = nn.Conv2d(
|
80 |
+
in_channels=3, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size
|
81 |
+
)
|
82 |
+
|
83 |
+
self.num_patches = (self.image_size // self.patch_size) ** 2
|
84 |
+
self.num_positions = self.num_patches + 1
|
85 |
+
|
86 |
+
self.position_embedding = nn.Parameter(torch.randn(1, self.num_positions, self.embed_dim))
|
87 |
+
|
88 |
+
def _get_pos_embed(self, pos_embed, H, W):
|
89 |
+
target_dtype = pos_embed.dtype
|
90 |
+
pos_embed = pos_embed.float().reshape(
|
91 |
+
1, self.image_size // self.patch_size, self.image_size // self.patch_size, -1).permute(0, 3, 1, 2)
|
92 |
+
pos_embed = F.interpolate(pos_embed, size=(H, W), mode='bicubic', align_corners=False). \
|
93 |
+
reshape(1, -1, H * W).permute(0, 2, 1).to(target_dtype)
|
94 |
+
return pos_embed
|
95 |
+
|
96 |
+
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
|
97 |
+
target_dtype = self.patch_embedding.weight.dtype
|
98 |
+
patch_embeds = self.patch_embedding(pixel_values) # shape = [*, channel, width, height]
|
99 |
+
batch_size, _, height, width = patch_embeds.shape
|
100 |
+
patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
|
101 |
+
class_embeds = self.class_embedding.expand(batch_size, 1, -1).to(target_dtype)
|
102 |
+
embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
|
103 |
+
position_embedding = torch.cat([
|
104 |
+
self.position_embedding[:, :1, :],
|
105 |
+
self._get_pos_embed(self.position_embedding[:, 1:, :], height, width)
|
106 |
+
], dim=1)
|
107 |
+
embeddings = embeddings + position_embedding.to(target_dtype)
|
108 |
+
return embeddings
|
109 |
+
|
110 |
+
|
111 |
+
class InternAttention(nn.Module):
|
112 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
113 |
+
|
114 |
+
def __init__(self, config: InternVisionConfig):
|
115 |
+
super().__init__()
|
116 |
+
self.config = config
|
117 |
+
self.embed_dim = config.hidden_size
|
118 |
+
self.num_heads = config.num_attention_heads
|
119 |
+
self.use_flash_attn = config.use_flash_attn and has_flash_attn
|
120 |
+
if config.use_flash_attn and not has_flash_attn:
|
121 |
+
print('Warning: Flash Attention is not available, use_flash_attn is set to False.')
|
122 |
+
self.head_dim = self.embed_dim // self.num_heads
|
123 |
+
if self.head_dim * self.num_heads != self.embed_dim:
|
124 |
+
raise ValueError(
|
125 |
+
f'embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:'
|
126 |
+
f' {self.num_heads}).'
|
127 |
+
)
|
128 |
+
|
129 |
+
self.scale = self.head_dim ** -0.5
|
130 |
+
self.qkv = nn.Linear(self.embed_dim, 3 * self.embed_dim, bias=config.qkv_bias)
|
131 |
+
self.attn_drop = nn.Dropout(config.attention_dropout)
|
132 |
+
self.proj_drop = nn.Dropout(config.dropout)
|
133 |
+
|
134 |
+
self.qk_normalization = config.qk_normalization
|
135 |
+
|
136 |
+
if self.qk_normalization:
|
137 |
+
self.q_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
|
138 |
+
self.k_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
|
139 |
+
|
140 |
+
if self.use_flash_attn:
|
141 |
+
self.inner_attn = FlashAttention(attention_dropout=config.attention_dropout)
|
142 |
+
self.proj = nn.Linear(self.embed_dim, self.embed_dim)
|
143 |
+
|
144 |
+
def _naive_attn(self, x):
|
145 |
+
B, N, C = x.shape
|
146 |
+
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
147 |
+
q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple)
|
148 |
+
|
149 |
+
if self.qk_normalization:
|
150 |
+
B_, H_, N_, D_ = q.shape
|
151 |
+
q = self.q_norm(q.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
|
152 |
+
k = self.k_norm(k.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
|
153 |
+
|
154 |
+
attn = ((q * self.scale) @ k.transpose(-2, -1))
|
155 |
+
attn = attn.softmax(dim=-1)
|
156 |
+
attn = self.attn_drop(attn)
|
157 |
+
|
158 |
+
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
|
159 |
+
x = self.proj(x)
|
160 |
+
x = self.proj_drop(x)
|
161 |
+
return x
|
162 |
+
|
163 |
+
def _flash_attn(self, x, key_padding_mask=None, need_weights=False):
|
164 |
+
qkv = self.qkv(x)
|
165 |
+
qkv = rearrange(qkv, 'b s (three h d) -> b s three h d', three=3, h=self.num_heads)
|
166 |
+
|
167 |
+
if self.qk_normalization:
|
168 |
+
q, k, v = qkv.unbind(2)
|
169 |
+
q = self.q_norm(q.flatten(-2, -1)).view(q.shape)
|
170 |
+
k = self.k_norm(k.flatten(-2, -1)).view(k.shape)
|
171 |
+
qkv = torch.stack([q, k, v], dim=2)
|
172 |
+
|
173 |
+
context, _ = self.inner_attn(
|
174 |
+
qkv, key_padding_mask=key_padding_mask, need_weights=need_weights, causal=False
|
175 |
+
)
|
176 |
+
outs = self.proj(rearrange(context, 'b s h d -> b s (h d)'))
|
177 |
+
outs = self.proj_drop(outs)
|
178 |
+
return outs
|
179 |
+
|
180 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
181 |
+
x = self._naive_attn(hidden_states) if not self.use_flash_attn else self._flash_attn(hidden_states)
|
182 |
+
return x
|
183 |
+
|
184 |
+
|
185 |
+
class InternMLP(nn.Module):
|
186 |
+
def __init__(self, config: InternVisionConfig):
|
187 |
+
super().__init__()
|
188 |
+
self.config = config
|
189 |
+
self.act = ACT2FN[config.hidden_act]
|
190 |
+
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
|
191 |
+
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
|
192 |
+
|
193 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
194 |
+
hidden_states = self.fc1(hidden_states)
|
195 |
+
hidden_states = self.act(hidden_states)
|
196 |
+
hidden_states = self.fc2(hidden_states)
|
197 |
+
return hidden_states
|
198 |
+
|
199 |
+
|
200 |
+
class InternVisionEncoderLayer(nn.Module):
|
201 |
+
def __init__(self, config: InternVisionConfig, drop_path_rate: float):
|
202 |
+
super().__init__()
|
203 |
+
self.embed_dim = config.hidden_size
|
204 |
+
self.intermediate_size = config.intermediate_size
|
205 |
+
self.norm_type = config.norm_type
|
206 |
+
|
207 |
+
self.attn = InternAttention(config)
|
208 |
+
self.mlp = InternMLP(config)
|
209 |
+
self.norm1 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
|
210 |
+
self.norm2 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
|
211 |
+
|
212 |
+
self.ls1 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
|
213 |
+
self.ls2 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
|
214 |
+
self.drop_path1 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
|
215 |
+
self.drop_path2 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
|
216 |
+
|
217 |
+
def forward(
|
218 |
+
self,
|
219 |
+
hidden_states: torch.Tensor,
|
220 |
+
) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor], Optional[Tuple[torch.FloatTensor]]]:
|
221 |
+
"""
|
222 |
+
Args:
|
223 |
+
hidden_states (`Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
224 |
+
"""
|
225 |
+
hidden_states = hidden_states + self.drop_path1(self.attn(self.norm1(hidden_states)) * self.ls1)
|
226 |
+
|
227 |
+
hidden_states = hidden_states + self.drop_path2(self.mlp(self.norm2(hidden_states)) * self.ls2)
|
228 |
+
|
229 |
+
return hidden_states
|
230 |
+
|
231 |
+
|
232 |
+
class InternVisionEncoder(nn.Module):
|
233 |
+
"""
|
234 |
+
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
|
235 |
+
[`InternEncoderLayer`].
|
236 |
+
|
237 |
+
Args:
|
238 |
+
config (`InternConfig`):
|
239 |
+
The corresponding vision configuration for the `InternEncoder`.
|
240 |
+
"""
|
241 |
+
|
242 |
+
def __init__(self, config: InternVisionConfig):
|
243 |
+
super().__init__()
|
244 |
+
self.config = config
|
245 |
+
# stochastic depth decay rule
|
246 |
+
dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, config.num_hidden_layers)]
|
247 |
+
self.layers = nn.ModuleList([
|
248 |
+
InternVisionEncoderLayer(config, dpr[idx]) for idx in range(config.num_hidden_layers)])
|
249 |
+
self.gradient_checkpointing = True
|
250 |
+
|
251 |
+
def forward(
|
252 |
+
self,
|
253 |
+
inputs_embeds,
|
254 |
+
output_hidden_states: Optional[bool] = None,
|
255 |
+
return_dict: Optional[bool] = None,
|
256 |
+
) -> Union[Tuple, BaseModelOutput]:
|
257 |
+
r"""
|
258 |
+
Args:
|
259 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
260 |
+
Embedded representation of the inputs. Should be float, not int tokens.
|
261 |
+
output_hidden_states (`bool`, *optional*):
|
262 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
263 |
+
for more detail.
|
264 |
+
return_dict (`bool`, *optional*):
|
265 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
266 |
+
"""
|
267 |
+
output_hidden_states = (
|
268 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
269 |
+
)
|
270 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
271 |
+
|
272 |
+
encoder_states = () if output_hidden_states else None
|
273 |
+
hidden_states = inputs_embeds
|
274 |
+
|
275 |
+
for idx, encoder_layer in enumerate(self.layers):
|
276 |
+
if output_hidden_states:
|
277 |
+
encoder_states = encoder_states + (hidden_states,)
|
278 |
+
if self.gradient_checkpointing and self.training:
|
279 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
280 |
+
encoder_layer,
|
281 |
+
hidden_states)
|
282 |
+
else:
|
283 |
+
layer_outputs = encoder_layer(
|
284 |
+
hidden_states,
|
285 |
+
)
|
286 |
+
hidden_states = layer_outputs
|
287 |
+
|
288 |
+
if output_hidden_states:
|
289 |
+
encoder_states = encoder_states + (hidden_states,)
|
290 |
+
|
291 |
+
if not return_dict:
|
292 |
+
return tuple(v for v in [hidden_states, encoder_states] if v is not None)
|
293 |
+
return BaseModelOutput(
|
294 |
+
last_hidden_state=hidden_states, hidden_states=encoder_states
|
295 |
+
)
|
296 |
+
|
297 |
+
|
298 |
+
class InternVisionModel(PreTrainedModel):
|
299 |
+
main_input_name = 'pixel_values'
|
300 |
+
_supports_flash_attn_2 = True
|
301 |
+
config_class = InternVisionConfig
|
302 |
+
_no_split_modules = ['InternVisionEncoderLayer']
|
303 |
+
|
304 |
+
def __init__(self, config: InternVisionConfig):
|
305 |
+
super().__init__(config)
|
306 |
+
self.config = config
|
307 |
+
|
308 |
+
self.embeddings = InternVisionEmbeddings(config)
|
309 |
+
self.encoder = InternVisionEncoder(config)
|
310 |
+
|
311 |
+
def resize_pos_embeddings(self, old_size, new_size, patch_size):
|
312 |
+
pos_emb = self.embeddings.position_embedding
|
313 |
+
_, num_positions, embed_dim = pos_emb.shape
|
314 |
+
cls_emb = pos_emb[:, :1, :]
|
315 |
+
pos_emb = pos_emb[:, 1:, :].reshape(1, old_size // patch_size, old_size // patch_size, -1).permute(0, 3, 1, 2)
|
316 |
+
pos_emb = F.interpolate(pos_emb.float(), size=new_size // patch_size, mode='bicubic', align_corners=False)
|
317 |
+
pos_emb = pos_emb.to(cls_emb.dtype).reshape(1, embed_dim, -1).permute(0, 2, 1)
|
318 |
+
pos_emb = torch.cat([cls_emb, pos_emb], dim=1)
|
319 |
+
self.embeddings.position_embedding = nn.Parameter(pos_emb)
|
320 |
+
self.embeddings.image_size = new_size
|
321 |
+
logger.info('Resized position embeddings from {} to {}'.format(old_size, new_size))
|
322 |
+
|
323 |
+
def get_input_embeddings(self):
|
324 |
+
return self.embeddings
|
325 |
+
|
326 |
+
def forward(
|
327 |
+
self,
|
328 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
329 |
+
output_hidden_states: Optional[bool] = None,
|
330 |
+
return_dict: Optional[bool] = None,
|
331 |
+
pixel_embeds: Optional[torch.FloatTensor] = None,
|
332 |
+
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
333 |
+
output_hidden_states = (
|
334 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
335 |
+
)
|
336 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
337 |
+
|
338 |
+
if pixel_values is None and pixel_embeds is None:
|
339 |
+
raise ValueError('You have to specify pixel_values or pixel_embeds')
|
340 |
+
|
341 |
+
if pixel_embeds is not None:
|
342 |
+
hidden_states = pixel_embeds
|
343 |
+
else:
|
344 |
+
if len(pixel_values.shape) == 4:
|
345 |
+
hidden_states = self.embeddings(pixel_values)
|
346 |
+
else:
|
347 |
+
raise ValueError(f'wrong pixel_values size: {pixel_values.shape}')
|
348 |
+
encoder_outputs = self.encoder(
|
349 |
+
inputs_embeds=hidden_states,
|
350 |
+
output_hidden_states=output_hidden_states,
|
351 |
+
return_dict=return_dict,
|
352 |
+
)
|
353 |
+
last_hidden_state = encoder_outputs.last_hidden_state
|
354 |
+
pooled_output = last_hidden_state[:, 0, :]
|
355 |
+
|
356 |
+
if not return_dict:
|
357 |
+
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
|
358 |
+
|
359 |
+
return BaseModelOutputWithPooling(
|
360 |
+
last_hidden_state=last_hidden_state,
|
361 |
+
pooler_output=pooled_output,
|
362 |
+
hidden_states=encoder_outputs.hidden_states,
|
363 |
+
attentions=encoder_outputs.attentions,
|
364 |
+
)
|
modeling_internlm2.py
ADDED
@@ -0,0 +1,1429 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
|
2 |
+
#
|
3 |
+
# This code is based on transformers/src/transformers/models/llama/modeling_llama.py
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
""" PyTorch InternLM2 model."""
|
17 |
+
import math
|
18 |
+
import queue
|
19 |
+
import threading
|
20 |
+
import warnings
|
21 |
+
from typing import List, Optional, Tuple, Union
|
22 |
+
|
23 |
+
import torch
|
24 |
+
import torch.nn.functional as F
|
25 |
+
import torch.utils.checkpoint
|
26 |
+
from einops import rearrange
|
27 |
+
from torch import nn
|
28 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
29 |
+
from transformers.activations import ACT2FN
|
30 |
+
from transformers.modeling_outputs import (BaseModelOutputWithPast,
|
31 |
+
CausalLMOutputWithPast,
|
32 |
+
SequenceClassifierOutputWithPast)
|
33 |
+
from transformers.modeling_utils import PreTrainedModel
|
34 |
+
from transformers.utils import (add_start_docstrings,
|
35 |
+
add_start_docstrings_to_model_forward, logging,
|
36 |
+
replace_return_docstrings)
|
37 |
+
|
38 |
+
try:
|
39 |
+
from transformers.generation.streamers import BaseStreamer
|
40 |
+
except: # noqa # pylint: disable=bare-except
|
41 |
+
BaseStreamer = None
|
42 |
+
|
43 |
+
from .configuration_internlm2 import InternLM2Config
|
44 |
+
|
45 |
+
logger = logging.get_logger(__name__)
|
46 |
+
|
47 |
+
_CONFIG_FOR_DOC = 'InternLM2Config'
|
48 |
+
|
49 |
+
flash_attn_func, flash_attn_varlen_func = None, None
|
50 |
+
pad_input, index_first_axis, unpad_input = None, None, None
|
51 |
+
try:
|
52 |
+
from flash_attn import flash_attn_func as _flash_attn_func
|
53 |
+
from flash_attn import flash_attn_varlen_func as _flash_attn_varlen_func
|
54 |
+
from flash_attn.bert_padding import index_first_axis as _index_first_axis
|
55 |
+
from flash_attn.bert_padding import pad_input as _pad_input
|
56 |
+
from flash_attn.bert_padding import unpad_input as _unpad_input
|
57 |
+
|
58 |
+
flash_attn_func, flash_attn_varlen_func = _flash_attn_func, _flash_attn_varlen_func
|
59 |
+
pad_input, index_first_axis, unpad_input = _pad_input, _index_first_axis, _unpad_input
|
60 |
+
has_flash_attn = True
|
61 |
+
except:
|
62 |
+
has_flash_attn = False
|
63 |
+
|
64 |
+
|
65 |
+
def _import_flash_attn():
|
66 |
+
global flash_attn_func, flash_attn_varlen_func
|
67 |
+
global pad_input, index_first_axis, unpad_input
|
68 |
+
try:
|
69 |
+
from flash_attn import flash_attn_func as _flash_attn_func
|
70 |
+
from flash_attn import \
|
71 |
+
flash_attn_varlen_func as _flash_attn_varlen_func
|
72 |
+
from flash_attn.bert_padding import \
|
73 |
+
index_first_axis as _index_first_axis
|
74 |
+
from flash_attn.bert_padding import pad_input as _pad_input
|
75 |
+
from flash_attn.bert_padding import unpad_input as _unpad_input
|
76 |
+
flash_attn_func, flash_attn_varlen_func = _flash_attn_func, _flash_attn_varlen_func
|
77 |
+
pad_input, index_first_axis, unpad_input = _pad_input, _index_first_axis, _unpad_input
|
78 |
+
except ImportError:
|
79 |
+
raise ImportError('flash_attn is not installed.')
|
80 |
+
|
81 |
+
|
82 |
+
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
|
83 |
+
def _get_unpad_data(attention_mask):
|
84 |
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
85 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
86 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
87 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
|
88 |
+
return (
|
89 |
+
indices,
|
90 |
+
cu_seqlens,
|
91 |
+
max_seqlen_in_batch,
|
92 |
+
)
|
93 |
+
|
94 |
+
|
95 |
+
# Copied from transformers.models.bart.modeling_bart._make_causal_mask
|
96 |
+
def _make_causal_mask(
|
97 |
+
input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
|
98 |
+
):
|
99 |
+
"""
|
100 |
+
Make causal mask used for bi-directional self-attention.
|
101 |
+
"""
|
102 |
+
bsz, tgt_len = input_ids_shape
|
103 |
+
mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device)
|
104 |
+
mask_cond = torch.arange(mask.size(-1), device=device)
|
105 |
+
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
|
106 |
+
mask = mask.to(dtype)
|
107 |
+
|
108 |
+
if past_key_values_length > 0:
|
109 |
+
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
|
110 |
+
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
|
111 |
+
|
112 |
+
|
113 |
+
# Copied from transformers.models.bart.modeling_bart._expand_mask
|
114 |
+
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
|
115 |
+
"""
|
116 |
+
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
|
117 |
+
"""
|
118 |
+
bsz, src_len = mask.size()
|
119 |
+
tgt_len = tgt_len if tgt_len is not None else src_len
|
120 |
+
|
121 |
+
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
|
122 |
+
|
123 |
+
inverted_mask = 1.0 - expanded_mask
|
124 |
+
|
125 |
+
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
|
126 |
+
|
127 |
+
|
128 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->InternLM2
|
129 |
+
class InternLM2RMSNorm(nn.Module):
|
130 |
+
def __init__(self, hidden_size, eps=1e-6):
|
131 |
+
"""
|
132 |
+
InternLM2RMSNorm is equivalent to T5LayerNorm
|
133 |
+
"""
|
134 |
+
super().__init__()
|
135 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
136 |
+
self.variance_epsilon = eps
|
137 |
+
|
138 |
+
def forward(self, hidden_states):
|
139 |
+
input_dtype = hidden_states.dtype
|
140 |
+
hidden_states = hidden_states.to(torch.float32)
|
141 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
142 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
143 |
+
return self.weight * hidden_states.to(input_dtype)
|
144 |
+
|
145 |
+
|
146 |
+
try:
|
147 |
+
from functools import partial
|
148 |
+
|
149 |
+
from apex.normalization import FusedRMSNorm
|
150 |
+
InternLM2RMSNorm = partial(FusedRMSNorm, eps=1e-6) # noqa
|
151 |
+
print('Discovered apex.normalization.FusedRMSNorm - will use it instead of InternLM2RMSNorm')
|
152 |
+
except ImportError:
|
153 |
+
# using the normal LlamaRMSNorm
|
154 |
+
pass
|
155 |
+
except Exception:
|
156 |
+
print('discovered apex but it failed to load, falling back to InternLM2RMSNorm')
|
157 |
+
pass
|
158 |
+
|
159 |
+
|
160 |
+
# Copied from transformers.model.llama.modeling_llama.LlamaRotaryEmbedding with Llama->InternLM2
|
161 |
+
class InternLM2RotaryEmbedding(nn.Module):
|
162 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
163 |
+
super().__init__()
|
164 |
+
|
165 |
+
self.dim = dim
|
166 |
+
self.max_position_embeddings = max_position_embeddings
|
167 |
+
self.base = base
|
168 |
+
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
|
169 |
+
self.register_buffer('inv_freq', inv_freq, persistent=False)
|
170 |
+
|
171 |
+
# Build here to make `torch.jit.trace` work.
|
172 |
+
self._set_cos_sin_cache(
|
173 |
+
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
|
174 |
+
)
|
175 |
+
|
176 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
177 |
+
self.max_seq_len_cached = seq_len
|
178 |
+
t = torch.arange(self.max_seq_len_cached, device=device).to(dtype=self.inv_freq.dtype)
|
179 |
+
|
180 |
+
freqs = torch.einsum('i,j->ij', t, self.inv_freq)
|
181 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
182 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
183 |
+
self.register_buffer('cos_cached', emb.cos().to(dtype), persistent=False)
|
184 |
+
self.register_buffer('sin_cached', emb.sin().to(dtype), persistent=False)
|
185 |
+
|
186 |
+
def forward(self, x, seq_len=None):
|
187 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
188 |
+
if seq_len > self.max_seq_len_cached:
|
189 |
+
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=torch.float32)
|
190 |
+
|
191 |
+
return (
|
192 |
+
self.cos_cached[:seq_len].to(dtype=x.dtype),
|
193 |
+
self.sin_cached[:seq_len].to(dtype=x.dtype),
|
194 |
+
)
|
195 |
+
|
196 |
+
|
197 |
+
# Copied from transformers.model.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding with Llama->InternLM2
|
198 |
+
class InternLM2LinearScalingRotaryEmbedding(InternLM2RotaryEmbedding):
|
199 |
+
"""InternLM2RotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
|
200 |
+
|
201 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
|
202 |
+
self.scaling_factor = scaling_factor
|
203 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
204 |
+
|
205 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
206 |
+
self.max_seq_len_cached = seq_len
|
207 |
+
t = torch.arange(self.max_seq_len_cached, device=device).to(dtype=self.inv_freq.dtype)
|
208 |
+
t = t / self.scaling_factor
|
209 |
+
|
210 |
+
freqs = torch.einsum('i,j->ij', t, self.inv_freq)
|
211 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
212 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
213 |
+
self.register_buffer('cos_cached', emb.cos().to(dtype), persistent=False)
|
214 |
+
self.register_buffer('sin_cached', emb.sin().to(dtype), persistent=False)
|
215 |
+
|
216 |
+
|
217 |
+
# Copied from transformers.model.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->InternLM2
|
218 |
+
class InternLM2DynamicNTKScalingRotaryEmbedding(InternLM2RotaryEmbedding):
|
219 |
+
"""InternLM2RotaryEmbedding extended with Dynamic NTK scaling.
|
220 |
+
Credits to the Reddit users /u/bloc97 and /u/emozilla.
|
221 |
+
"""
|
222 |
+
|
223 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
|
224 |
+
self.scaling_factor = scaling_factor
|
225 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
226 |
+
|
227 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
228 |
+
self.max_seq_len_cached = seq_len
|
229 |
+
|
230 |
+
if seq_len > self.max_position_embeddings:
|
231 |
+
base = self.base * (
|
232 |
+
(self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
|
233 |
+
) ** (self.dim / (self.dim - 2))
|
234 |
+
inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
|
235 |
+
self.register_buffer('inv_freq', inv_freq, persistent=False)
|
236 |
+
|
237 |
+
t = torch.arange(self.max_seq_len_cached, device=device).to(dtype=self.inv_freq.dtype)
|
238 |
+
|
239 |
+
freqs = torch.einsum('i,j->ij', t, self.inv_freq)
|
240 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
241 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
242 |
+
self.register_buffer('cos_cached', emb.cos().to(dtype), persistent=False)
|
243 |
+
self.register_buffer('sin_cached', emb.sin().to(dtype), persistent=False)
|
244 |
+
|
245 |
+
|
246 |
+
# Copied from transformers.model.llama.modeling_llama.rotate_half
|
247 |
+
def rotate_half(x):
|
248 |
+
"""Rotates half the hidden dims of the input."""
|
249 |
+
x1 = x[..., : x.shape[-1] // 2]
|
250 |
+
x2 = x[..., x.shape[-1] // 2:]
|
251 |
+
return torch.cat((-x2, x1), dim=-1)
|
252 |
+
|
253 |
+
|
254 |
+
# Copied from transformers.model.llama.modeling_llama.apply_rotary_pos_emb
|
255 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
|
256 |
+
"""Applies Rotary Position Embedding to the query and key tensors."""
|
257 |
+
cos = cos[position_ids].unsqueeze(unsqueeze_dim)
|
258 |
+
sin = sin[position_ids].unsqueeze(unsqueeze_dim)
|
259 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
260 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
261 |
+
return q_embed, k_embed
|
262 |
+
|
263 |
+
|
264 |
+
class InternLM2MLP(nn.Module):
|
265 |
+
def __init__(self, config):
|
266 |
+
super().__init__()
|
267 |
+
self.config = config
|
268 |
+
self.hidden_size = config.hidden_size
|
269 |
+
self.intermediate_size = config.intermediate_size
|
270 |
+
self.w1 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
271 |
+
self.w3 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
272 |
+
self.w2 = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
273 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
274 |
+
|
275 |
+
def forward(self, x):
|
276 |
+
down_proj = self.w2(self.act_fn(self.w1(x)) * self.w3(x))
|
277 |
+
|
278 |
+
return down_proj
|
279 |
+
|
280 |
+
|
281 |
+
# Copied from transformers.model.llama.modeling_llama.repeat_kv
|
282 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
283 |
+
"""
|
284 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
285 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
286 |
+
"""
|
287 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
288 |
+
if n_rep == 1:
|
289 |
+
return hidden_states
|
290 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
291 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
292 |
+
|
293 |
+
|
294 |
+
# Modified from transformers.model.llama.modeling_llama.LlamaAttention
|
295 |
+
class InternLM2Attention(nn.Module):
|
296 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
297 |
+
|
298 |
+
def __init__(self, config: InternLM2Config):
|
299 |
+
super().__init__()
|
300 |
+
self.config = config
|
301 |
+
self.hidden_size = config.hidden_size
|
302 |
+
self.num_heads = config.num_attention_heads
|
303 |
+
self.head_dim = self.hidden_size // self.num_heads
|
304 |
+
self.num_key_value_heads = config.num_key_value_heads
|
305 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
306 |
+
self.max_position_embeddings = config.max_position_embeddings
|
307 |
+
self.is_causal = True
|
308 |
+
|
309 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
310 |
+
raise ValueError(
|
311 |
+
f'hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}'
|
312 |
+
f' and `num_heads`: {self.num_heads}).'
|
313 |
+
)
|
314 |
+
|
315 |
+
self.wqkv = nn.Linear(
|
316 |
+
self.hidden_size,
|
317 |
+
(self.num_heads + 2 * self.num_key_value_heads) * self.head_dim,
|
318 |
+
bias=config.bias,
|
319 |
+
)
|
320 |
+
|
321 |
+
self.wo = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.bias)
|
322 |
+
self._init_rope()
|
323 |
+
|
324 |
+
def _init_rope(self):
|
325 |
+
if self.config.rope_scaling is None:
|
326 |
+
self.rotary_emb = InternLM2RotaryEmbedding(
|
327 |
+
self.head_dim,
|
328 |
+
max_position_embeddings=self.max_position_embeddings,
|
329 |
+
base=self.config.rope_theta,
|
330 |
+
)
|
331 |
+
else:
|
332 |
+
scaling_type = self.config.rope_scaling['type']
|
333 |
+
scaling_factor = self.config.rope_scaling['factor']
|
334 |
+
if scaling_type == 'dynamic':
|
335 |
+
self.rotary_emb = InternLM2DynamicNTKScalingRotaryEmbedding(
|
336 |
+
self.head_dim,
|
337 |
+
max_position_embeddings=self.max_position_embeddings,
|
338 |
+
base=self.config.rope_theta,
|
339 |
+
scaling_factor=scaling_factor,
|
340 |
+
)
|
341 |
+
elif scaling_type == 'linear':
|
342 |
+
self.rotary_emb = InternLM2LinearScalingRotaryEmbedding(
|
343 |
+
self.head_dim,
|
344 |
+
max_position_embeddings=self.max_position_embeddings,
|
345 |
+
base=self.config.rope_theta,
|
346 |
+
scaling_factor=scaling_factor,
|
347 |
+
)
|
348 |
+
else:
|
349 |
+
raise ValueError("Currently we only support rotary embedding's type being 'dynamic' or 'linear'.")
|
350 |
+
return self.rotary_emb
|
351 |
+
|
352 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
353 |
+
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
354 |
+
|
355 |
+
def forward(
|
356 |
+
self,
|
357 |
+
hidden_states: torch.Tensor,
|
358 |
+
attention_mask: Optional[torch.Tensor] = None,
|
359 |
+
position_ids: Optional[torch.LongTensor] = None,
|
360 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
361 |
+
output_attentions: bool = False,
|
362 |
+
use_cache: bool = False,
|
363 |
+
**kwargs,
|
364 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
365 |
+
if 'padding_mask' in kwargs:
|
366 |
+
warnings.warn(
|
367 |
+
'Passing `padding_mask` is deprecated and will be removed in v4.37. '
|
368 |
+
'Please make sure use `attention_mask` instead.`'
|
369 |
+
)
|
370 |
+
|
371 |
+
bsz, q_len, _ = hidden_states.size()
|
372 |
+
|
373 |
+
qkv_states = self.wqkv(hidden_states)
|
374 |
+
|
375 |
+
qkv_states = rearrange(
|
376 |
+
qkv_states,
|
377 |
+
'b q (h gs d) -> b q h gs d',
|
378 |
+
gs=2 + self.num_key_value_groups,
|
379 |
+
d=self.head_dim,
|
380 |
+
)
|
381 |
+
|
382 |
+
query_states = qkv_states[..., : self.num_key_value_groups, :]
|
383 |
+
query_states = rearrange(query_states, 'b q h gs d -> b q (h gs) d')
|
384 |
+
key_states = qkv_states[..., -2, :]
|
385 |
+
value_states = qkv_states[..., -1, :]
|
386 |
+
|
387 |
+
query_states = query_states.transpose(1, 2)
|
388 |
+
key_states = key_states.transpose(1, 2)
|
389 |
+
value_states = value_states.transpose(1, 2)
|
390 |
+
|
391 |
+
kv_seq_len = key_states.shape[-2]
|
392 |
+
if past_key_value is not None:
|
393 |
+
kv_seq_len += past_key_value[0].shape[-2]
|
394 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
395 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
396 |
+
|
397 |
+
if past_key_value is not None:
|
398 |
+
# reuse k, v, self_attention
|
399 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
400 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
401 |
+
|
402 |
+
past_key_value = (key_states, value_states) if use_cache else None
|
403 |
+
|
404 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
405 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
406 |
+
|
407 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
408 |
+
|
409 |
+
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
410 |
+
raise ValueError(
|
411 |
+
f'Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is'
|
412 |
+
f' {attn_weights.size()}'
|
413 |
+
)
|
414 |
+
|
415 |
+
if attention_mask is not None:
|
416 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
417 |
+
raise ValueError(
|
418 |
+
f'Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}'
|
419 |
+
)
|
420 |
+
attn_weights = attn_weights + attention_mask
|
421 |
+
|
422 |
+
# upcast attention to fp32
|
423 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
424 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
425 |
+
|
426 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
427 |
+
raise ValueError(
|
428 |
+
f'`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is'
|
429 |
+
f' {attn_output.size()}'
|
430 |
+
)
|
431 |
+
|
432 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
433 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
434 |
+
|
435 |
+
attn_output = self.wo(attn_output)
|
436 |
+
|
437 |
+
if not output_attentions:
|
438 |
+
attn_weights = None
|
439 |
+
|
440 |
+
return attn_output, attn_weights, past_key_value
|
441 |
+
|
442 |
+
|
443 |
+
# Modified from transformers.model.llama.modeling_llama.InternLM2FlashAttention2
|
444 |
+
class InternLM2FlashAttention2(InternLM2Attention):
|
445 |
+
"""
|
446 |
+
InternLM2 flash attention module. This module inherits from `InternLM2Attention` as the weights of the module stays
|
447 |
+
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
448 |
+
flash attention and deal with padding tokens in case the input contains any of them.
|
449 |
+
"""
|
450 |
+
|
451 |
+
def forward(
|
452 |
+
self,
|
453 |
+
hidden_states: torch.Tensor,
|
454 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
455 |
+
position_ids: Optional[torch.LongTensor] = None,
|
456 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
457 |
+
output_attentions: bool = False,
|
458 |
+
use_cache: bool = False,
|
459 |
+
**kwargs,
|
460 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
461 |
+
# InternLM2FlashAttention2 attention does not support output_attentions
|
462 |
+
if 'padding_mask' in kwargs:
|
463 |
+
warnings.warn(
|
464 |
+
'Passing `padding_mask` is deprecated and will be removed in v4.37. '
|
465 |
+
'Please make sure use `attention_mask` instead.`'
|
466 |
+
)
|
467 |
+
|
468 |
+
# overwrite attention_mask with padding_mask
|
469 |
+
attention_mask = kwargs.pop('padding_mask')
|
470 |
+
|
471 |
+
output_attentions = False
|
472 |
+
|
473 |
+
bsz, q_len, _ = hidden_states.size()
|
474 |
+
|
475 |
+
qkv_states = self.wqkv(hidden_states)
|
476 |
+
|
477 |
+
qkv_states = rearrange(
|
478 |
+
qkv_states,
|
479 |
+
'b q (h gs d) -> b q h gs d',
|
480 |
+
gs=2 + self.num_key_value_groups,
|
481 |
+
d=self.head_dim,
|
482 |
+
)
|
483 |
+
|
484 |
+
query_states = qkv_states[..., : self.num_key_value_groups, :]
|
485 |
+
query_states = rearrange(query_states, 'b q h gs d -> b q (h gs) d')
|
486 |
+
key_states = qkv_states[..., -2, :]
|
487 |
+
value_states = qkv_states[..., -1, :]
|
488 |
+
|
489 |
+
query_states = query_states.transpose(1, 2)
|
490 |
+
key_states = key_states.transpose(1, 2)
|
491 |
+
value_states = value_states.transpose(1, 2)
|
492 |
+
|
493 |
+
kv_seq_len = key_states.shape[-2]
|
494 |
+
if past_key_value is not None:
|
495 |
+
kv_seq_len += past_key_value[0].shape[-2]
|
496 |
+
|
497 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
498 |
+
|
499 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
500 |
+
|
501 |
+
if past_key_value is not None:
|
502 |
+
# reuse k, v, self_attention
|
503 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
504 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
505 |
+
|
506 |
+
past_key_value = (key_states, value_states) if use_cache else None
|
507 |
+
|
508 |
+
query_states = query_states.transpose(1, 2)
|
509 |
+
key_states = key_states.transpose(1, 2)
|
510 |
+
value_states = value_states.transpose(1, 2)
|
511 |
+
|
512 |
+
attn_output = self._flash_attention_forward(
|
513 |
+
query_states, key_states, value_states, attention_mask, q_len
|
514 |
+
)
|
515 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
|
516 |
+
attn_output = self.wo(attn_output)
|
517 |
+
|
518 |
+
if not output_attentions:
|
519 |
+
attn_weights = None
|
520 |
+
|
521 |
+
return attn_output, attn_weights, past_key_value
|
522 |
+
|
523 |
+
def _flash_attention_forward(
|
524 |
+
self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
|
525 |
+
):
|
526 |
+
"""
|
527 |
+
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
528 |
+
first unpad the input, then computes the attention scores and pad the final attention scores.
|
529 |
+
|
530 |
+
Args:
|
531 |
+
query_states (`torch.Tensor`):
|
532 |
+
Input query states to be passed to Flash Attention API
|
533 |
+
key_states (`torch.Tensor`):
|
534 |
+
Input key states to be passed to Flash Attention API
|
535 |
+
value_states (`torch.Tensor`):
|
536 |
+
Input value states to be passed to Flash Attention API
|
537 |
+
attention_mask (`torch.Tensor`):
|
538 |
+
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
539 |
+
position of padding tokens and 1 for the position of non-padding tokens.
|
540 |
+
dropout (`int`, *optional*):
|
541 |
+
Attention dropout
|
542 |
+
softmax_scale (`float`, *optional*):
|
543 |
+
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
544 |
+
"""
|
545 |
+
# Contains at least one padding token in the sequence
|
546 |
+
causal = self.is_causal and query_length != 1
|
547 |
+
if attention_mask is not None:
|
548 |
+
batch_size = query_states.shape[0]
|
549 |
+
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._unpad_input(
|
550 |
+
query_states, key_states, value_states, attention_mask, query_length
|
551 |
+
)
|
552 |
+
|
553 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
554 |
+
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
555 |
+
|
556 |
+
attn_output_unpad = flash_attn_varlen_func(
|
557 |
+
query_states,
|
558 |
+
key_states,
|
559 |
+
value_states,
|
560 |
+
cu_seqlens_q=cu_seqlens_q,
|
561 |
+
cu_seqlens_k=cu_seqlens_k,
|
562 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
563 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
564 |
+
dropout_p=dropout,
|
565 |
+
softmax_scale=softmax_scale,
|
566 |
+
causal=causal,
|
567 |
+
)
|
568 |
+
|
569 |
+
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
|
570 |
+
else:
|
571 |
+
attn_output = flash_attn_func(
|
572 |
+
query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
|
573 |
+
)
|
574 |
+
|
575 |
+
return attn_output
|
576 |
+
|
577 |
+
def _unpad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
578 |
+
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
579 |
+
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
|
580 |
+
|
581 |
+
key_layer = index_first_axis(
|
582 |
+
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
583 |
+
)
|
584 |
+
value_layer = index_first_axis(
|
585 |
+
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
586 |
+
)
|
587 |
+
|
588 |
+
if query_length == kv_seq_len:
|
589 |
+
query_layer = index_first_axis(
|
590 |
+
query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
|
591 |
+
)
|
592 |
+
cu_seqlens_q = cu_seqlens_k
|
593 |
+
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
594 |
+
indices_q = indices_k
|
595 |
+
elif query_length == 1:
|
596 |
+
max_seqlen_in_batch_q = 1
|
597 |
+
cu_seqlens_q = torch.arange(
|
598 |
+
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
599 |
+
) # There is a memcpy here, that is very bad.
|
600 |
+
indices_q = cu_seqlens_q[:-1]
|
601 |
+
query_layer = query_layer.squeeze(1)
|
602 |
+
else:
|
603 |
+
# The -q_len: slice assumes left padding.
|
604 |
+
attention_mask = attention_mask[:, -query_length:]
|
605 |
+
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
|
606 |
+
|
607 |
+
return (
|
608 |
+
query_layer,
|
609 |
+
key_layer,
|
610 |
+
value_layer,
|
611 |
+
indices_q.to(torch.int64),
|
612 |
+
(cu_seqlens_q, cu_seqlens_k),
|
613 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
614 |
+
)
|
615 |
+
|
616 |
+
|
617 |
+
INTERNLM2_ATTENTION_CLASSES = {
|
618 |
+
'eager': InternLM2Attention,
|
619 |
+
'flash_attention_2': InternLM2FlashAttention2,
|
620 |
+
}
|
621 |
+
|
622 |
+
|
623 |
+
# Modified from transformers.model.llama.modeling_llama.LlamaDecoderLayer
|
624 |
+
class InternLM2DecoderLayer(nn.Module):
|
625 |
+
def __init__(self, config: InternLM2Config):
|
626 |
+
super().__init__()
|
627 |
+
self.hidden_size = config.hidden_size
|
628 |
+
|
629 |
+
self.attention = INTERNLM2_ATTENTION_CLASSES[config.attn_implementation](config=config)
|
630 |
+
|
631 |
+
self.feed_forward = InternLM2MLP(config)
|
632 |
+
self.attention_norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
633 |
+
self.ffn_norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
634 |
+
|
635 |
+
def forward(
|
636 |
+
self,
|
637 |
+
hidden_states: torch.Tensor,
|
638 |
+
attention_mask: Optional[torch.Tensor] = None,
|
639 |
+
position_ids: Optional[torch.LongTensor] = None,
|
640 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
641 |
+
output_attentions: Optional[bool] = False,
|
642 |
+
use_cache: Optional[bool] = False,
|
643 |
+
**kwargs,
|
644 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
645 |
+
"""
|
646 |
+
Args:
|
647 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
648 |
+
attention_mask (`torch.FloatTensor`, *optional*):
|
649 |
+
attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
|
650 |
+
query_sequence_length, key_sequence_length)` if default attention is used.
|
651 |
+
output_attentions (`bool`, *optional*):
|
652 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
653 |
+
returned tensors for more detail.
|
654 |
+
use_cache (`bool`, *optional*):
|
655 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
656 |
+
(see `past_key_values`).
|
657 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
658 |
+
"""
|
659 |
+
if 'padding_mask' in kwargs:
|
660 |
+
warnings.warn(
|
661 |
+
'Passing `padding_mask` is deprecated and will be removed in v4.37. '
|
662 |
+
'Please make sure use `attention_mask` instead.`'
|
663 |
+
)
|
664 |
+
|
665 |
+
residual = hidden_states
|
666 |
+
|
667 |
+
hidden_states = self.attention_norm(hidden_states)
|
668 |
+
|
669 |
+
# Self Attention
|
670 |
+
hidden_states, self_attn_weights, present_key_value = self.attention(
|
671 |
+
hidden_states=hidden_states,
|
672 |
+
attention_mask=attention_mask,
|
673 |
+
position_ids=position_ids,
|
674 |
+
past_key_value=past_key_value,
|
675 |
+
output_attentions=output_attentions,
|
676 |
+
use_cache=use_cache,
|
677 |
+
**kwargs,
|
678 |
+
)
|
679 |
+
hidden_states = residual + hidden_states
|
680 |
+
|
681 |
+
# Fully Connected
|
682 |
+
residual = hidden_states
|
683 |
+
hidden_states = self.ffn_norm(hidden_states)
|
684 |
+
hidden_states = self.feed_forward(hidden_states)
|
685 |
+
hidden_states = residual + hidden_states
|
686 |
+
|
687 |
+
outputs = (hidden_states,)
|
688 |
+
|
689 |
+
if output_attentions:
|
690 |
+
outputs += (self_attn_weights,)
|
691 |
+
|
692 |
+
if use_cache:
|
693 |
+
outputs += (present_key_value,)
|
694 |
+
|
695 |
+
return outputs
|
696 |
+
|
697 |
+
|
698 |
+
InternLM2_START_DOCSTRING = r"""
|
699 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
700 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
701 |
+
etc.)
|
702 |
+
|
703 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
704 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
705 |
+
and behavior.
|
706 |
+
|
707 |
+
Parameters:
|
708 |
+
config ([`InternLM2Config`]):
|
709 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
710 |
+
load the weights associated with the model, only the configuration. Check out the
|
711 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
712 |
+
"""
|
713 |
+
|
714 |
+
|
715 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaPreTrainedModel with Llama->InternLM2
|
716 |
+
@add_start_docstrings(
|
717 |
+
'The bare InternLM2 Model outputting raw hidden-states without any specific head on top.',
|
718 |
+
InternLM2_START_DOCSTRING,
|
719 |
+
)
|
720 |
+
class InternLM2PreTrainedModel(PreTrainedModel):
|
721 |
+
config_class = InternLM2Config
|
722 |
+
base_model_prefix = 'model'
|
723 |
+
supports_gradient_checkpointing = True
|
724 |
+
_no_split_modules = ['InternLM2DecoderLayer']
|
725 |
+
_skip_keys_device_placement = 'past_key_values'
|
726 |
+
_supports_flash_attn_2 = True
|
727 |
+
|
728 |
+
def _init_weights(self, module):
|
729 |
+
std = self.config.initializer_range
|
730 |
+
if isinstance(module, nn.Linear):
|
731 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
732 |
+
if module.bias is not None:
|
733 |
+
module.bias.data.zero_()
|
734 |
+
elif isinstance(module, nn.Embedding):
|
735 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
736 |
+
if module.padding_idx is not None:
|
737 |
+
module.weight.data[module.padding_idx].zero_()
|
738 |
+
|
739 |
+
|
740 |
+
InternLM2_INPUTS_DOCSTRING = r"""
|
741 |
+
Args:
|
742 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
743 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
744 |
+
it.
|
745 |
+
|
746 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
747 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
748 |
+
|
749 |
+
[What are input IDs?](../glossary#input-ids)
|
750 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
751 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
752 |
+
|
753 |
+
- 1 for tokens that are **not masked**,
|
754 |
+
- 0 for tokens that are **masked**.
|
755 |
+
|
756 |
+
[What are attention masks?](../glossary#attention-mask)
|
757 |
+
|
758 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
759 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
760 |
+
|
761 |
+
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
|
762 |
+
`past_key_values`).
|
763 |
+
|
764 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
765 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
766 |
+
information on the default strategy.
|
767 |
+
|
768 |
+
- 1 indicates the head is **not masked**,
|
769 |
+
- 0 indicates the head is **masked**.
|
770 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
771 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
772 |
+
config.n_positions - 1]`.
|
773 |
+
|
774 |
+
[What are position IDs?](../glossary#position-ids)
|
775 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or
|
776 |
+
when `config.use_cache=True`):
|
777 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
778 |
+
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
|
779 |
+
`(batch_size, num_heads, decoder_sequence_length, embed_size_per_head)`.
|
780 |
+
|
781 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
782 |
+
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
|
783 |
+
|
784 |
+
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
785 |
+
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
786 |
+
of shape `(batch_size, sequence_length)`.
|
787 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
788 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
789 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
790 |
+
model's internal embedding lookup matrix.
|
791 |
+
use_cache (`bool`, *optional*):
|
792 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
793 |
+
`past_key_values`).
|
794 |
+
output_attentions (`bool`, *optional*):
|
795 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
796 |
+
tensors for more detail.
|
797 |
+
output_hidden_states (`bool`, *optional*):
|
798 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
799 |
+
more detail.
|
800 |
+
return_dict (`bool`, *optional*):
|
801 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
802 |
+
"""
|
803 |
+
|
804 |
+
|
805 |
+
# Modified from transformers.model.llama.modeling_llama.LlamaModel
|
806 |
+
@add_start_docstrings(
|
807 |
+
'The bare InternLM2 Model outputting raw hidden-states without any specific head on top.',
|
808 |
+
InternLM2_START_DOCSTRING,
|
809 |
+
)
|
810 |
+
class InternLM2Model(InternLM2PreTrainedModel):
|
811 |
+
"""
|
812 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`InternLM2DecoderLayer`]
|
813 |
+
|
814 |
+
Args:
|
815 |
+
config: InternLM2Config
|
816 |
+
"""
|
817 |
+
|
818 |
+
_auto_class = 'AutoModel'
|
819 |
+
|
820 |
+
def __init__(self, config: InternLM2Config):
|
821 |
+
super().__init__(config)
|
822 |
+
self.padding_idx = config.pad_token_id
|
823 |
+
self.vocab_size = config.vocab_size
|
824 |
+
self.config = config
|
825 |
+
if not has_flash_attn:
|
826 |
+
self.config.attn_implementation = 'eager'
|
827 |
+
print('Warning: Flash attention is not available, using eager attention instead.')
|
828 |
+
|
829 |
+
self.tok_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
830 |
+
|
831 |
+
self.layers = nn.ModuleList([InternLM2DecoderLayer(config) for _ in range(config.num_hidden_layers)])
|
832 |
+
self.norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
833 |
+
|
834 |
+
self.gradient_checkpointing = False
|
835 |
+
# Initialize weights and apply final processing
|
836 |
+
self.post_init()
|
837 |
+
|
838 |
+
def get_input_embeddings(self):
|
839 |
+
return self.tok_embeddings
|
840 |
+
|
841 |
+
def set_input_embeddings(self, value):
|
842 |
+
self.tok_embeddings = value
|
843 |
+
|
844 |
+
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
|
845 |
+
# create causal mask
|
846 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
847 |
+
combined_attention_mask = None
|
848 |
+
if input_shape[-1] > 1:
|
849 |
+
combined_attention_mask = _make_causal_mask(
|
850 |
+
input_shape,
|
851 |
+
inputs_embeds.dtype,
|
852 |
+
device=inputs_embeds.device,
|
853 |
+
past_key_values_length=past_key_values_length,
|
854 |
+
)
|
855 |
+
|
856 |
+
if attention_mask is not None:
|
857 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
858 |
+
expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
|
859 |
+
inputs_embeds.device
|
860 |
+
)
|
861 |
+
combined_attention_mask = (
|
862 |
+
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
|
863 |
+
)
|
864 |
+
|
865 |
+
return combined_attention_mask
|
866 |
+
|
867 |
+
@add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
|
868 |
+
def forward(
|
869 |
+
self,
|
870 |
+
input_ids: torch.LongTensor = None,
|
871 |
+
attention_mask: Optional[torch.Tensor] = None,
|
872 |
+
position_ids: Optional[torch.LongTensor] = None,
|
873 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
874 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
875 |
+
use_cache: Optional[bool] = None,
|
876 |
+
output_attentions: Optional[bool] = None,
|
877 |
+
output_hidden_states: Optional[bool] = None,
|
878 |
+
return_dict: Optional[bool] = None,
|
879 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
880 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
881 |
+
output_hidden_states = (
|
882 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
883 |
+
)
|
884 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
885 |
+
|
886 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
887 |
+
|
888 |
+
if self.config.attn_implementation == 'flash_attention_2':
|
889 |
+
_import_flash_attn()
|
890 |
+
|
891 |
+
# retrieve input_ids and inputs_embeds
|
892 |
+
if input_ids is not None and inputs_embeds is not None:
|
893 |
+
raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time')
|
894 |
+
elif input_ids is not None:
|
895 |
+
batch_size, seq_length = input_ids.shape[:2]
|
896 |
+
elif inputs_embeds is not None:
|
897 |
+
batch_size, seq_length = inputs_embeds.shape[:2]
|
898 |
+
else:
|
899 |
+
raise ValueError('You have to specify either input_ids or inputs_embeds')
|
900 |
+
|
901 |
+
seq_length_with_past = seq_length
|
902 |
+
past_key_values_length = 0
|
903 |
+
if past_key_values is not None:
|
904 |
+
past_key_values_length = past_key_values[0][0].shape[2]
|
905 |
+
seq_length_with_past = seq_length_with_past + past_key_values_length
|
906 |
+
|
907 |
+
if position_ids is None:
|
908 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
909 |
+
position_ids = torch.arange(
|
910 |
+
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
911 |
+
)
|
912 |
+
position_ids = position_ids.unsqueeze(0)
|
913 |
+
|
914 |
+
if inputs_embeds is None:
|
915 |
+
inputs_embeds = self.tok_embeddings(input_ids)
|
916 |
+
|
917 |
+
if self.config.attn_implementation == 'flash_attention_2':
|
918 |
+
# 2d mask is passed through the layers
|
919 |
+
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
|
920 |
+
else:
|
921 |
+
if attention_mask is None:
|
922 |
+
attention_mask = torch.ones(
|
923 |
+
(batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
|
924 |
+
)
|
925 |
+
attention_mask = self._prepare_decoder_attention_mask(
|
926 |
+
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
|
927 |
+
)
|
928 |
+
|
929 |
+
# embed positions
|
930 |
+
hidden_states = inputs_embeds
|
931 |
+
|
932 |
+
if self.gradient_checkpointing and self.training:
|
933 |
+
if use_cache:
|
934 |
+
logger.warning_once(
|
935 |
+
'`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...'
|
936 |
+
)
|
937 |
+
use_cache = False
|
938 |
+
|
939 |
+
# decoder layers
|
940 |
+
all_hidden_states = () if output_hidden_states else None
|
941 |
+
all_self_attns = () if output_attentions else None
|
942 |
+
next_decoder_cache = () if use_cache else None
|
943 |
+
|
944 |
+
for idx, decoder_layer in enumerate(self.layers):
|
945 |
+
if output_hidden_states:
|
946 |
+
all_hidden_states += (hidden_states,)
|
947 |
+
|
948 |
+
past_key_value = past_key_values[idx] if past_key_values is not None else None
|
949 |
+
|
950 |
+
if self.gradient_checkpointing and self.training:
|
951 |
+
|
952 |
+
def create_custom_forward(module):
|
953 |
+
def custom_forward(*inputs):
|
954 |
+
# None for past_key_value
|
955 |
+
return module(*inputs, output_attentions, None)
|
956 |
+
|
957 |
+
return custom_forward
|
958 |
+
|
959 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
960 |
+
create_custom_forward(decoder_layer),
|
961 |
+
hidden_states,
|
962 |
+
attention_mask,
|
963 |
+
position_ids,
|
964 |
+
None,
|
965 |
+
)
|
966 |
+
else:
|
967 |
+
layer_outputs = decoder_layer(
|
968 |
+
hidden_states,
|
969 |
+
attention_mask=attention_mask,
|
970 |
+
position_ids=position_ids,
|
971 |
+
past_key_value=past_key_value,
|
972 |
+
output_attentions=output_attentions,
|
973 |
+
use_cache=use_cache,
|
974 |
+
)
|
975 |
+
|
976 |
+
hidden_states = layer_outputs[0]
|
977 |
+
|
978 |
+
if use_cache:
|
979 |
+
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
|
980 |
+
|
981 |
+
if output_attentions:
|
982 |
+
all_self_attns += (layer_outputs[1],)
|
983 |
+
|
984 |
+
hidden_states = self.norm(hidden_states)
|
985 |
+
|
986 |
+
# add hidden states from the last decoder layer
|
987 |
+
if output_hidden_states:
|
988 |
+
all_hidden_states += (hidden_states,)
|
989 |
+
|
990 |
+
next_cache = next_decoder_cache if use_cache else None
|
991 |
+
if not return_dict:
|
992 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
993 |
+
return BaseModelOutputWithPast(
|
994 |
+
last_hidden_state=hidden_states,
|
995 |
+
past_key_values=next_cache,
|
996 |
+
hidden_states=all_hidden_states,
|
997 |
+
attentions=all_self_attns,
|
998 |
+
)
|
999 |
+
|
1000 |
+
|
1001 |
+
# Modified from transformers.model.llama.modeling_llama.LlamaForCausalLM
|
1002 |
+
class InternLM2ForCausalLM(InternLM2PreTrainedModel):
|
1003 |
+
_auto_class = 'AutoModelForCausalLM'
|
1004 |
+
|
1005 |
+
_tied_weights_keys = ['output.weight']
|
1006 |
+
|
1007 |
+
def __init__(self, config):
|
1008 |
+
super().__init__(config)
|
1009 |
+
self.model = InternLM2Model(config)
|
1010 |
+
self.vocab_size = config.vocab_size
|
1011 |
+
self.output = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
1012 |
+
|
1013 |
+
# Initialize weights and apply final processing
|
1014 |
+
self.post_init()
|
1015 |
+
|
1016 |
+
def get_input_embeddings(self):
|
1017 |
+
return self.model.tok_embeddings
|
1018 |
+
|
1019 |
+
def set_input_embeddings(self, value):
|
1020 |
+
self.model.tok_embeddings = value
|
1021 |
+
|
1022 |
+
def get_output_embeddings(self):
|
1023 |
+
return self.output
|
1024 |
+
|
1025 |
+
def set_output_embeddings(self, new_embeddings):
|
1026 |
+
self.output = new_embeddings
|
1027 |
+
|
1028 |
+
def set_decoder(self, decoder):
|
1029 |
+
self.model = decoder
|
1030 |
+
|
1031 |
+
def get_decoder(self):
|
1032 |
+
return self.model
|
1033 |
+
|
1034 |
+
@add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
|
1035 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
1036 |
+
def forward(
|
1037 |
+
self,
|
1038 |
+
input_ids: torch.LongTensor = None,
|
1039 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1040 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1041 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1042 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1043 |
+
labels: Optional[torch.LongTensor] = None,
|
1044 |
+
use_cache: Optional[bool] = None,
|
1045 |
+
output_attentions: Optional[bool] = None,
|
1046 |
+
output_hidden_states: Optional[bool] = None,
|
1047 |
+
return_dict: Optional[bool] = None,
|
1048 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
1049 |
+
r"""
|
1050 |
+
Args:
|
1051 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1052 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
1053 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
1054 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
1055 |
+
|
1056 |
+
Returns:
|
1057 |
+
|
1058 |
+
Example:
|
1059 |
+
|
1060 |
+
```python
|
1061 |
+
>>> from transformers import AutoTokenizer, InternLM2ForCausalLM
|
1062 |
+
|
1063 |
+
>>> model = InternLM2ForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
|
1064 |
+
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
|
1065 |
+
|
1066 |
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
1067 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
1068 |
+
|
1069 |
+
>>> # Generate
|
1070 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
1071 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
1072 |
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
1073 |
+
```"""
|
1074 |
+
|
1075 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1076 |
+
output_hidden_states = (
|
1077 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1078 |
+
)
|
1079 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1080 |
+
|
1081 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
1082 |
+
outputs = self.model(
|
1083 |
+
input_ids=input_ids,
|
1084 |
+
attention_mask=attention_mask,
|
1085 |
+
position_ids=position_ids,
|
1086 |
+
past_key_values=past_key_values,
|
1087 |
+
inputs_embeds=inputs_embeds,
|
1088 |
+
use_cache=use_cache,
|
1089 |
+
output_attentions=output_attentions,
|
1090 |
+
output_hidden_states=output_hidden_states,
|
1091 |
+
return_dict=return_dict,
|
1092 |
+
)
|
1093 |
+
|
1094 |
+
hidden_states = outputs[0]
|
1095 |
+
logits = self.output(hidden_states)
|
1096 |
+
logits = logits.float()
|
1097 |
+
|
1098 |
+
loss = None
|
1099 |
+
if labels is not None:
|
1100 |
+
# Shift so that tokens < n predict n
|
1101 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
1102 |
+
shift_labels = labels[..., 1:].contiguous()
|
1103 |
+
# Flatten the tokens
|
1104 |
+
loss_fct = CrossEntropyLoss()
|
1105 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
1106 |
+
shift_labels = shift_labels.view(-1)
|
1107 |
+
# Enable model parallelism
|
1108 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
1109 |
+
loss = loss_fct(shift_logits, shift_labels)
|
1110 |
+
|
1111 |
+
if not return_dict:
|
1112 |
+
output = (logits,) + outputs[1:]
|
1113 |
+
return (loss,) + output if loss is not None else output
|
1114 |
+
|
1115 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
1116 |
+
output = CausalLMOutputWithPast(
|
1117 |
+
loss=loss,
|
1118 |
+
logits=logits,
|
1119 |
+
past_key_values=outputs.past_key_values,
|
1120 |
+
hidden_states=outputs.hidden_states,
|
1121 |
+
attentions=outputs.attentions,
|
1122 |
+
)
|
1123 |
+
output['logits'] = output['logits'].to(device)
|
1124 |
+
return output
|
1125 |
+
|
1126 |
+
def prepare_inputs_for_generation(
|
1127 |
+
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
1128 |
+
):
|
1129 |
+
if past_key_values is not None:
|
1130 |
+
past_length = past_key_values[0][0].shape[2]
|
1131 |
+
|
1132 |
+
# Some generation methods already pass only the last input ID
|
1133 |
+
if input_ids.shape[1] > past_length:
|
1134 |
+
remove_prefix_length = past_length
|
1135 |
+
else:
|
1136 |
+
# Default to old behavior: keep only final ID
|
1137 |
+
remove_prefix_length = input_ids.shape[1] - 1
|
1138 |
+
|
1139 |
+
input_ids = input_ids[:, remove_prefix_length:]
|
1140 |
+
|
1141 |
+
position_ids = kwargs.get('position_ids', None)
|
1142 |
+
if attention_mask is not None and position_ids is None:
|
1143 |
+
# create position_ids on the fly for batch generation
|
1144 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
1145 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
1146 |
+
if past_key_values:
|
1147 |
+
position_ids = position_ids[:, -input_ids.shape[1]:]
|
1148 |
+
|
1149 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
1150 |
+
if inputs_embeds is not None and past_key_values is None:
|
1151 |
+
model_inputs = {'inputs_embeds': inputs_embeds}
|
1152 |
+
else:
|
1153 |
+
model_inputs = {'input_ids': input_ids}
|
1154 |
+
|
1155 |
+
model_inputs.update(
|
1156 |
+
{
|
1157 |
+
'position_ids': position_ids,
|
1158 |
+
'past_key_values': past_key_values,
|
1159 |
+
'use_cache': kwargs.get('use_cache'),
|
1160 |
+
'attention_mask': attention_mask,
|
1161 |
+
}
|
1162 |
+
)
|
1163 |
+
return model_inputs
|
1164 |
+
|
1165 |
+
@staticmethod
|
1166 |
+
def _reorder_cache(past_key_values, beam_idx):
|
1167 |
+
reordered_past = ()
|
1168 |
+
for layer_past in past_key_values:
|
1169 |
+
reordered_past += (
|
1170 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
1171 |
+
)
|
1172 |
+
return reordered_past
|
1173 |
+
|
1174 |
+
def build_inputs(self, tokenizer, query: str, history: List[Tuple[str, str]] = [], meta_instruction=''):
|
1175 |
+
if tokenizer.add_bos_token:
|
1176 |
+
prompt = ''
|
1177 |
+
else:
|
1178 |
+
prompt = tokenizer.bos_token
|
1179 |
+
if meta_instruction:
|
1180 |
+
prompt += f"""<|im_start|>system\n{meta_instruction}<|im_end|>\n"""
|
1181 |
+
for record in history:
|
1182 |
+
prompt += f"""<|im_start|>user\n{record[0]}<|im_end|>\n<|im_start|>assistant\n{record[1]}<|im_end|>\n"""
|
1183 |
+
prompt += f"""<|im_start|>user\n{query}<|im_end|>\n<|im_start|>assistant\n"""
|
1184 |
+
return tokenizer([prompt], return_tensors='pt')
|
1185 |
+
|
1186 |
+
@torch.no_grad()
|
1187 |
+
def chat(
|
1188 |
+
self,
|
1189 |
+
tokenizer,
|
1190 |
+
query: str,
|
1191 |
+
history: List[Tuple[str, str]] = [],
|
1192 |
+
streamer: Optional[BaseStreamer] = None,
|
1193 |
+
max_new_tokens: int = 1024,
|
1194 |
+
do_sample: bool = True,
|
1195 |
+
temperature: float = 0.8,
|
1196 |
+
top_p: float = 0.8,
|
1197 |
+
meta_instruction: str = 'You are an AI assistant whose name is InternLM (书生·浦语).\n'
|
1198 |
+
'- InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.\n'
|
1199 |
+
'- InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such as English and 中文.',
|
1200 |
+
**kwargs,
|
1201 |
+
):
|
1202 |
+
inputs = self.build_inputs(tokenizer, query, history, meta_instruction)
|
1203 |
+
inputs = {k: v.to(self.device) for k, v in inputs.items() if torch.is_tensor(v)}
|
1204 |
+
# also add end-of-assistant token in eos token id to avoid unnecessary generation
|
1205 |
+
eos_token_id = [tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids(['<|im_end|>'])[0]]
|
1206 |
+
outputs = self.generate(
|
1207 |
+
**inputs,
|
1208 |
+
streamer=streamer,
|
1209 |
+
max_new_tokens=max_new_tokens,
|
1210 |
+
do_sample=do_sample,
|
1211 |
+
temperature=temperature,
|
1212 |
+
top_p=top_p,
|
1213 |
+
eos_token_id=eos_token_id,
|
1214 |
+
**kwargs,
|
1215 |
+
)
|
1216 |
+
outputs = outputs[0].cpu().tolist()[len(inputs['input_ids'][0]):]
|
1217 |
+
response = tokenizer.decode(outputs, skip_special_tokens=True)
|
1218 |
+
response = response.split('<|im_end|>')[0]
|
1219 |
+
history = history + [(query, response)]
|
1220 |
+
return response, history
|
1221 |
+
|
1222 |
+
@torch.no_grad()
|
1223 |
+
def stream_chat(
|
1224 |
+
self,
|
1225 |
+
tokenizer,
|
1226 |
+
query: str,
|
1227 |
+
history: List[Tuple[str, str]] = [],
|
1228 |
+
max_new_tokens: int = 1024,
|
1229 |
+
do_sample: bool = True,
|
1230 |
+
temperature: float = 0.8,
|
1231 |
+
top_p: float = 0.8,
|
1232 |
+
**kwargs,
|
1233 |
+
):
|
1234 |
+
"""
|
1235 |
+
Return a generator in format: (response, history)
|
1236 |
+
Eg.
|
1237 |
+
('你好,有什么可以帮助您的吗', [('你好', '你好,有什么可以帮助您的吗')])
|
1238 |
+
('你好,有什么可以帮助您的吗?', [('你好', '你好,有什么可以帮助您的吗?')])
|
1239 |
+
"""
|
1240 |
+
if BaseStreamer is None:
|
1241 |
+
raise ModuleNotFoundError(
|
1242 |
+
'The version of `transformers` is too low. Please make sure '
|
1243 |
+
'that you have installed `transformers>=4.28.0`.'
|
1244 |
+
)
|
1245 |
+
|
1246 |
+
response_queue = queue.Queue(maxsize=20)
|
1247 |
+
|
1248 |
+
class ChatStreamer(BaseStreamer):
|
1249 |
+
def __init__(self, tokenizer) -> None:
|
1250 |
+
super().__init__()
|
1251 |
+
self.tokenizer = tokenizer
|
1252 |
+
self.queue = response_queue
|
1253 |
+
self.query = query
|
1254 |
+
self.history = history
|
1255 |
+
self.response = ''
|
1256 |
+
self.cache = []
|
1257 |
+
self.received_inputs = False
|
1258 |
+
self.queue.put((self.response, history + [(self.query, self.response)]))
|
1259 |
+
|
1260 |
+
def put(self, value):
|
1261 |
+
if len(value.shape) > 1 and value.shape[0] > 1:
|
1262 |
+
raise ValueError('ChatStreamer only supports batch size 1')
|
1263 |
+
elif len(value.shape) > 1:
|
1264 |
+
value = value[0]
|
1265 |
+
|
1266 |
+
if not self.received_inputs:
|
1267 |
+
# The first received value is input_ids, ignore here
|
1268 |
+
self.received_inputs = True
|
1269 |
+
return
|
1270 |
+
|
1271 |
+
self.cache.extend(value.tolist())
|
1272 |
+
token = self.tokenizer.decode(self.cache, skip_special_tokens=True)
|
1273 |
+
if token.strip() != '<|im_end|>':
|
1274 |
+
self.response = self.response + token
|
1275 |
+
history = self.history + [(self.query, self.response)]
|
1276 |
+
self.queue.put((self.response, history))
|
1277 |
+
self.cache = []
|
1278 |
+
else:
|
1279 |
+
self.end()
|
1280 |
+
|
1281 |
+
def end(self):
|
1282 |
+
self.queue.put(None)
|
1283 |
+
|
1284 |
+
def stream_producer():
|
1285 |
+
return self.chat(
|
1286 |
+
tokenizer=tokenizer,
|
1287 |
+
query=query,
|
1288 |
+
streamer=ChatStreamer(tokenizer=tokenizer),
|
1289 |
+
history=history,
|
1290 |
+
max_new_tokens=max_new_tokens,
|
1291 |
+
do_sample=do_sample,
|
1292 |
+
temperature=temperature,
|
1293 |
+
top_p=top_p,
|
1294 |
+
**kwargs,
|
1295 |
+
)
|
1296 |
+
|
1297 |
+
def consumer():
|
1298 |
+
producer = threading.Thread(target=stream_producer)
|
1299 |
+
producer.start()
|
1300 |
+
while True:
|
1301 |
+
res = response_queue.get()
|
1302 |
+
if res is None:
|
1303 |
+
return
|
1304 |
+
yield res
|
1305 |
+
|
1306 |
+
return consumer()
|
1307 |
+
|
1308 |
+
|
1309 |
+
# Copied from transformers.model.llama.modeling_llama.LlamaForSequenceClassification with Llama->InternLM2
|
1310 |
+
@add_start_docstrings(
|
1311 |
+
"""
|
1312 |
+
The InternLM2 Model transformer with a sequence classification head on top (linear layer).
|
1313 |
+
|
1314 |
+
[`InternLM2ForSequenceClassification`] uses the last token in order to do the classification,
|
1315 |
+
as other causal models (e.g. GPT-2) do.
|
1316 |
+
|
1317 |
+
Since it does classification on the last token, it requires to know the position of the last token. If a
|
1318 |
+
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
1319 |
+
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
1320 |
+
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
1321 |
+
each row of the batch).
|
1322 |
+
""",
|
1323 |
+
InternLM2_START_DOCSTRING,
|
1324 |
+
)
|
1325 |
+
class InternLM2ForSequenceClassification(InternLM2PreTrainedModel):
|
1326 |
+
def __init__(self, config):
|
1327 |
+
super().__init__(config)
|
1328 |
+
self.num_labels = config.num_labels
|
1329 |
+
self.model = InternLM2Model(config)
|
1330 |
+
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
|
1331 |
+
|
1332 |
+
# Initialize weights and apply final processing
|
1333 |
+
self.post_init()
|
1334 |
+
|
1335 |
+
def get_input_embeddings(self):
|
1336 |
+
return self.model.tok_embeddings
|
1337 |
+
|
1338 |
+
def set_input_embeddings(self, value):
|
1339 |
+
self.model.tok_embeddings = value
|
1340 |
+
|
1341 |
+
@add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
|
1342 |
+
def forward(
|
1343 |
+
self,
|
1344 |
+
input_ids: torch.LongTensor = None,
|
1345 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1346 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1347 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1348 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1349 |
+
labels: Optional[torch.LongTensor] = None,
|
1350 |
+
use_cache: Optional[bool] = None,
|
1351 |
+
output_attentions: Optional[bool] = None,
|
1352 |
+
output_hidden_states: Optional[bool] = None,
|
1353 |
+
return_dict: Optional[bool] = None,
|
1354 |
+
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
1355 |
+
r"""
|
1356 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1357 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1358 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1359 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1360 |
+
"""
|
1361 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1362 |
+
|
1363 |
+
transformer_outputs = self.model(
|
1364 |
+
input_ids,
|
1365 |
+
attention_mask=attention_mask,
|
1366 |
+
position_ids=position_ids,
|
1367 |
+
past_key_values=past_key_values,
|
1368 |
+
inputs_embeds=inputs_embeds,
|
1369 |
+
use_cache=use_cache,
|
1370 |
+
output_attentions=output_attentions,
|
1371 |
+
output_hidden_states=output_hidden_states,
|
1372 |
+
return_dict=return_dict,
|
1373 |
+
)
|
1374 |
+
hidden_states = transformer_outputs[0]
|
1375 |
+
logits = self.score(hidden_states)
|
1376 |
+
|
1377 |
+
if input_ids is not None:
|
1378 |
+
batch_size = input_ids.shape[0]
|
1379 |
+
else:
|
1380 |
+
batch_size = inputs_embeds.shape[0]
|
1381 |
+
|
1382 |
+
if self.config.pad_token_id is None and batch_size != 1:
|
1383 |
+
raise ValueError('Cannot handle batch sizes > 1 if no padding token is defined.')
|
1384 |
+
if self.config.pad_token_id is None:
|
1385 |
+
sequence_lengths = -1
|
1386 |
+
else:
|
1387 |
+
if input_ids is not None:
|
1388 |
+
sequence_lengths = (torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1).to(
|
1389 |
+
logits.device
|
1390 |
+
)
|
1391 |
+
else:
|
1392 |
+
sequence_lengths = -1
|
1393 |
+
|
1394 |
+
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
1395 |
+
|
1396 |
+
loss = None
|
1397 |
+
if labels is not None:
|
1398 |
+
labels = labels.to(logits.device)
|
1399 |
+
if self.config.problem_type is None:
|
1400 |
+
if self.num_labels == 1:
|
1401 |
+
self.config.problem_type = 'regression'
|
1402 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
1403 |
+
self.config.problem_type = 'single_label_classification'
|
1404 |
+
else:
|
1405 |
+
self.config.problem_type = 'multi_label_classification'
|
1406 |
+
|
1407 |
+
if self.config.problem_type == 'regression':
|
1408 |
+
loss_fct = MSELoss()
|
1409 |
+
if self.num_labels == 1:
|
1410 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
1411 |
+
else:
|
1412 |
+
loss = loss_fct(pooled_logits, labels)
|
1413 |
+
elif self.config.problem_type == 'single_label_classification':
|
1414 |
+
loss_fct = CrossEntropyLoss()
|
1415 |
+
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
1416 |
+
elif self.config.problem_type == 'multi_label_classification':
|
1417 |
+
loss_fct = BCEWithLogitsLoss()
|
1418 |
+
loss = loss_fct(pooled_logits, labels)
|
1419 |
+
if not return_dict:
|
1420 |
+
output = (pooled_logits,) + transformer_outputs[1:]
|
1421 |
+
return ((loss,) + output) if loss is not None else output
|
1422 |
+
|
1423 |
+
return SequenceClassifierOutputWithPast(
|
1424 |
+
loss=loss,
|
1425 |
+
logits=pooled_logits,
|
1426 |
+
past_key_values=transformer_outputs.past_key_values,
|
1427 |
+
hidden_states=transformer_outputs.hidden_states,
|
1428 |
+
attentions=transformer_outputs.attentions,
|
1429 |
+
)
|
modeling_phi3.py
ADDED
@@ -0,0 +1,1610 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
""" PyTorch Phi-3 model."""
|
16 |
+
|
17 |
+
import inspect
|
18 |
+
import math
|
19 |
+
import warnings
|
20 |
+
from typing import List, Optional, Tuple, Union
|
21 |
+
|
22 |
+
import torch
|
23 |
+
import torch.nn.functional as F
|
24 |
+
import torch.utils.checkpoint
|
25 |
+
from torch import nn
|
26 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
27 |
+
from transformers.activations import ACT2FN
|
28 |
+
from transformers.cache_utils import Cache, DynamicCache
|
29 |
+
from transformers.modeling_attn_mask_utils import \
|
30 |
+
_prepare_4d_causal_attention_mask
|
31 |
+
from transformers.modeling_outputs import (BaseModelOutputWithPast,
|
32 |
+
CausalLMOutputWithPast,
|
33 |
+
SequenceClassifierOutputWithPast,
|
34 |
+
TokenClassifierOutput)
|
35 |
+
from transformers.modeling_utils import PreTrainedModel
|
36 |
+
from transformers.utils import (add_code_sample_docstrings,
|
37 |
+
add_start_docstrings,
|
38 |
+
add_start_docstrings_to_model_forward,
|
39 |
+
is_flash_attn_2_available,
|
40 |
+
is_flash_attn_greater_or_equal_2_10, logging,
|
41 |
+
replace_return_docstrings)
|
42 |
+
|
43 |
+
from .configuration_phi3 import Phi3Config
|
44 |
+
|
45 |
+
logger = logging.get_logger(__name__)
|
46 |
+
|
47 |
+
# Transformers scans dependencies in the modeling file, causing issues on conditional loading. The regex only ignores try/catch blocks, but not if statements
|
48 |
+
# if is_flash_attn_2_available():
|
49 |
+
_flash_supports_window_size = False
|
50 |
+
try:
|
51 |
+
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
52 |
+
from flash_attn.bert_padding import (index_first_axis, pad_input, # noqa
|
53 |
+
unpad_input)
|
54 |
+
|
55 |
+
_flash_supports_window_size = 'window_size' in list(inspect.signature(flash_attn_func).parameters)
|
56 |
+
has_flash_attn = True
|
57 |
+
except ImportError as error:
|
58 |
+
logger.warning(
|
59 |
+
f'`flash-attention` package not found, consider installing for better performance: {error}.'
|
60 |
+
)
|
61 |
+
if not _flash_supports_window_size:
|
62 |
+
logger.warning(
|
63 |
+
"Current `flash-attenton` does not support `window_size`. Either upgrade or use `attn_implementation='eager'`."
|
64 |
+
)
|
65 |
+
has_flash_attn = False
|
66 |
+
|
67 |
+
_CHECKPOINT_FOR_DOC = 'microsoft/Phi-3-mini-4k-instruct'
|
68 |
+
_CONFIG_FOR_DOC = 'Phi3Config'
|
69 |
+
|
70 |
+
PHI3_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
71 |
+
'microsoft/Phi-3-mini-4k-instruct',
|
72 |
+
'microsoft/Phi-3-mini-128k-instruct',
|
73 |
+
# See all Phi-3 models at https://huggingface.co/models?filter=Phi-3
|
74 |
+
]
|
75 |
+
|
76 |
+
|
77 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Phi3
|
78 |
+
class Phi3RMSNorm(nn.Module):
|
79 |
+
def __init__(self, hidden_size, eps=1e-6):
|
80 |
+
"""
|
81 |
+
Phi3RMSNorm is equivalent to T5LayerNorm
|
82 |
+
"""
|
83 |
+
super().__init__()
|
84 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
85 |
+
self.variance_epsilon = eps
|
86 |
+
|
87 |
+
def forward(self, hidden_states):
|
88 |
+
input_dtype = hidden_states.dtype
|
89 |
+
hidden_states = hidden_states.to(torch.float32)
|
90 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
91 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
92 |
+
return self.weight * hidden_states.to(input_dtype)
|
93 |
+
|
94 |
+
|
95 |
+
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
|
96 |
+
def _get_unpad_data(attention_mask):
|
97 |
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
98 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
99 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
100 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
|
101 |
+
return (
|
102 |
+
indices,
|
103 |
+
cu_seqlens,
|
104 |
+
max_seqlen_in_batch,
|
105 |
+
)
|
106 |
+
|
107 |
+
|
108 |
+
# Copied from transformers.models.gemma.modeling_gemma.GemmaRotaryEmbedding with gemma->phi3, Gemma->Phi3
|
109 |
+
class Phi3RotaryEmbedding(nn.Module):
|
110 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
111 |
+
super().__init__()
|
112 |
+
|
113 |
+
self.dim = dim
|
114 |
+
self.max_position_embeddings = max_position_embeddings
|
115 |
+
self.base = base
|
116 |
+
self.register_buffer('inv_freq', None, persistent=False)
|
117 |
+
|
118 |
+
@torch.no_grad()
|
119 |
+
def forward(self, x, position_ids, seq_len=None):
|
120 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
121 |
+
if self.inv_freq is None:
|
122 |
+
self.inv_freq = 1.0 / (
|
123 |
+
self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64, device=x.device).float() / self.dim)
|
124 |
+
)
|
125 |
+
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
|
126 |
+
position_ids_expanded = position_ids[:, None, :].float()
|
127 |
+
# Force float32 since bfloat16 loses precision on long contexts
|
128 |
+
# See https://github.com/huggingface/transformers/pull/29285
|
129 |
+
device_type = x.device.type
|
130 |
+
device_type = device_type if isinstance(device_type, str) and device_type != 'mps' else 'cpu'
|
131 |
+
with torch.autocast(device_type=device_type, enabled=False):
|
132 |
+
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
|
133 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
134 |
+
cos = emb.cos()
|
135 |
+
sin = emb.sin()
|
136 |
+
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
137 |
+
|
138 |
+
|
139 |
+
class Phi3SuScaledRotaryEmbedding(Phi3RotaryEmbedding):
|
140 |
+
def __init__(self, dim, config, device=None):
|
141 |
+
super().__init__(dim, config.max_position_embeddings, config.rope_theta, device)
|
142 |
+
|
143 |
+
self.short_factor = config.rope_scaling['short_factor']
|
144 |
+
self.long_factor = config.rope_scaling['long_factor']
|
145 |
+
self.original_max_position_embeddings = config.original_max_position_embeddings
|
146 |
+
|
147 |
+
@torch.no_grad()
|
148 |
+
def forward(self, x, position_ids, seq_len=None):
|
149 |
+
seq_len = torch.max(position_ids) + 1
|
150 |
+
if seq_len > self.original_max_position_embeddings:
|
151 |
+
ext_factors = torch.tensor(self.long_factor, dtype=torch.float32, device=x.device)
|
152 |
+
else:
|
153 |
+
ext_factors = torch.tensor(self.short_factor, dtype=torch.float32, device=x.device)
|
154 |
+
|
155 |
+
inv_freq_shape = torch.arange(0, self.dim, 2, dtype=torch.int64, device=x.device).float() / self.dim
|
156 |
+
self.inv_freq = 1.0 / (ext_factors * self.base**inv_freq_shape)
|
157 |
+
|
158 |
+
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
|
159 |
+
position_ids_expanded = position_ids[:, None, :].float()
|
160 |
+
|
161 |
+
# Force float32 since bfloat16 loses precision on long contexts
|
162 |
+
# See https://github.com/huggingface/transformers/pull/29285
|
163 |
+
device_type = x.device.type
|
164 |
+
device_type = device_type if isinstance(device_type, str) and device_type != 'mps' else 'cpu'
|
165 |
+
with torch.autocast(device_type=device_type, enabled=False):
|
166 |
+
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
|
167 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
168 |
+
|
169 |
+
scale = self.max_position_embeddings / self.original_max_position_embeddings
|
170 |
+
if scale <= 1.0:
|
171 |
+
scaling_factor = 1.0
|
172 |
+
else:
|
173 |
+
scaling_factor = math.sqrt(1 + math.log(scale) / math.log(self.original_max_position_embeddings))
|
174 |
+
|
175 |
+
cos = emb.cos() * scaling_factor
|
176 |
+
sin = emb.sin() * scaling_factor
|
177 |
+
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
178 |
+
|
179 |
+
|
180 |
+
class Phi3YarnScaledRotaryEmbedding(Phi3RotaryEmbedding):
|
181 |
+
def __init__(self, dim, config, device=None):
|
182 |
+
super().__init__(dim, config.max_position_embeddings, config.rope_theta, device)
|
183 |
+
|
184 |
+
self.short_factor = config.rope_scaling['short_factor']
|
185 |
+
self.long_factor = config.rope_scaling['long_factor']
|
186 |
+
self.original_max_position_embeddings = config.original_max_position_embeddings
|
187 |
+
|
188 |
+
@torch.no_grad()
|
189 |
+
def forward(self, x, position_ids, seq_len=None):
|
190 |
+
seq_len = torch.max(position_ids) + 1
|
191 |
+
if seq_len > self.original_max_position_embeddings:
|
192 |
+
ext_factors = torch.tensor(self.long_factor, dtype=torch.float32, device=x.device)
|
193 |
+
else:
|
194 |
+
ext_factors = torch.tensor(self.short_factor, dtype=torch.float32, device=x.device)
|
195 |
+
|
196 |
+
inv_freq_shape = torch.arange(0, self.dim, 2, dtype=torch.int64, device=x.device).float() / self.dim
|
197 |
+
self.inv_freq = 1.0 / (ext_factors * self.base**inv_freq_shape)
|
198 |
+
|
199 |
+
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
|
200 |
+
position_ids_expanded = position_ids[:, None, :].float()
|
201 |
+
|
202 |
+
# Force float32 since bfloat16 loses precision on long contexts
|
203 |
+
# See https://github.com/huggingface/transformers/pull/29285
|
204 |
+
device_type = x.device.type
|
205 |
+
device_type = device_type if isinstance(device_type, str) and device_type != 'mps' else 'cpu'
|
206 |
+
with torch.autocast(device_type=device_type, enabled=False):
|
207 |
+
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
|
208 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
209 |
+
|
210 |
+
scale = self.max_position_embeddings / self.original_max_position_embeddings
|
211 |
+
if scale <= 1.0:
|
212 |
+
scaling_factor = 1.0
|
213 |
+
else:
|
214 |
+
scaling_factor = 0.1 * math.log(scale) + 1.0
|
215 |
+
|
216 |
+
cos = emb.cos() * scaling_factor
|
217 |
+
sin = emb.sin() * scaling_factor
|
218 |
+
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
219 |
+
|
220 |
+
|
221 |
+
# Copied from transformers.models.llama.modeling_llama.rotate_half
|
222 |
+
def rotate_half(x):
|
223 |
+
"""Rotates half the hidden dims of the input."""
|
224 |
+
x1 = x[..., : x.shape[-1] // 2]
|
225 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
226 |
+
return torch.cat((-x2, x1), dim=-1)
|
227 |
+
|
228 |
+
|
229 |
+
# Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
|
230 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
|
231 |
+
"""Applies Rotary Position Embedding to the query and key tensors.
|
232 |
+
|
233 |
+
Args:
|
234 |
+
q (`torch.Tensor`): The query tensor.
|
235 |
+
k (`torch.Tensor`): The key tensor.
|
236 |
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
237 |
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
238 |
+
position_ids (`torch.Tensor`, *optional*):
|
239 |
+
Deprecated and unused.
|
240 |
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
241 |
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
242 |
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
243 |
+
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
244 |
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
245 |
+
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
246 |
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
247 |
+
Returns:
|
248 |
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
249 |
+
"""
|
250 |
+
cos = cos.unsqueeze(unsqueeze_dim)
|
251 |
+
sin = sin.unsqueeze(unsqueeze_dim)
|
252 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
253 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
254 |
+
return q_embed, k_embed
|
255 |
+
|
256 |
+
|
257 |
+
class Phi3MLP(nn.Module):
|
258 |
+
def __init__(self, config):
|
259 |
+
super().__init__()
|
260 |
+
|
261 |
+
self.config = config
|
262 |
+
self.gate_up_proj = nn.Linear(config.hidden_size, 2 * config.intermediate_size, bias=False)
|
263 |
+
self.down_proj = nn.Linear(config.intermediate_size, config.hidden_size, bias=False)
|
264 |
+
|
265 |
+
self.activation_fn = ACT2FN[config.hidden_act]
|
266 |
+
|
267 |
+
def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
|
268 |
+
up_states = self.gate_up_proj(hidden_states)
|
269 |
+
|
270 |
+
gate, up_states = up_states.chunk(2, dim=-1)
|
271 |
+
up_states = up_states * self.activation_fn(gate)
|
272 |
+
|
273 |
+
return self.down_proj(up_states)
|
274 |
+
|
275 |
+
|
276 |
+
# Copied from transformers.models.llama.modeling_llama.repeat_kv with llama->phi
|
277 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
278 |
+
"""
|
279 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
280 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
281 |
+
"""
|
282 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
283 |
+
if n_rep == 1:
|
284 |
+
return hidden_states
|
285 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
286 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
287 |
+
|
288 |
+
|
289 |
+
class Phi3Attention(nn.Module):
|
290 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
291 |
+
|
292 |
+
def __init__(self, config: Phi3Config, layer_idx: Optional[int] = None):
|
293 |
+
super().__init__()
|
294 |
+
self.config = config
|
295 |
+
self.layer_idx = layer_idx
|
296 |
+
if layer_idx is None:
|
297 |
+
logger.warning_once(
|
298 |
+
f'Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will '
|
299 |
+
'lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` '
|
300 |
+
'when creating this class.'
|
301 |
+
)
|
302 |
+
|
303 |
+
self.attention_dropout = config.attention_dropout
|
304 |
+
self.hidden_size = config.hidden_size
|
305 |
+
self.num_heads = config.num_attention_heads
|
306 |
+
self.head_dim = self.hidden_size // self.num_heads
|
307 |
+
self.num_key_value_heads = config.num_key_value_heads
|
308 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
309 |
+
self.max_position_embeddings = config.max_position_embeddings
|
310 |
+
self.original_max_position_embeddings = config.original_max_position_embeddings
|
311 |
+
self.rope_theta = config.rope_theta
|
312 |
+
self.rope_scaling = config.rope_scaling
|
313 |
+
self.is_causal = True
|
314 |
+
|
315 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
316 |
+
raise ValueError(
|
317 |
+
f'hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}'
|
318 |
+
f' and `num_heads`: {self.num_heads}).'
|
319 |
+
)
|
320 |
+
|
321 |
+
op_size = self.num_heads * self.head_dim + 2 * (self.num_key_value_heads * self.head_dim)
|
322 |
+
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
|
323 |
+
self.qkv_proj = nn.Linear(self.hidden_size, op_size, bias=False)
|
324 |
+
self._init_rope()
|
325 |
+
|
326 |
+
def _init_rope(self):
|
327 |
+
if self.rope_scaling is None:
|
328 |
+
self.rotary_emb = Phi3RotaryEmbedding(
|
329 |
+
self.head_dim,
|
330 |
+
max_position_embeddings=self.max_position_embeddings,
|
331 |
+
base=self.rope_theta,
|
332 |
+
)
|
333 |
+
else:
|
334 |
+
scaling_type = self.config.rope_scaling['type']
|
335 |
+
if scaling_type == 'su':
|
336 |
+
self.rotary_emb = Phi3SuScaledRotaryEmbedding(self.head_dim, self.config)
|
337 |
+
elif scaling_type == 'yarn':
|
338 |
+
self.rotary_emb = Phi3YarnScaledRotaryEmbedding(self.head_dim, self.config)
|
339 |
+
else:
|
340 |
+
raise ValueError(f'Unknown RoPE scaling type {scaling_type}')
|
341 |
+
|
342 |
+
def forward(
|
343 |
+
self,
|
344 |
+
hidden_states: torch.Tensor,
|
345 |
+
attention_mask: Optional[torch.Tensor] = None,
|
346 |
+
position_ids: Optional[torch.LongTensor] = None,
|
347 |
+
past_key_value: Optional[Cache] = None,
|
348 |
+
output_attentions: bool = False,
|
349 |
+
use_cache: bool = False,
|
350 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
351 |
+
logger.warning_once('You are not running the flash-attention implementation, expect numerical differences.')
|
352 |
+
|
353 |
+
bsz, q_len, _ = hidden_states.size()
|
354 |
+
|
355 |
+
qkv = self.qkv_proj(hidden_states)
|
356 |
+
query_pos = self.num_heads * self.head_dim
|
357 |
+
query_states = qkv[..., :query_pos]
|
358 |
+
key_states = qkv[..., query_pos : query_pos + self.num_key_value_heads * self.head_dim]
|
359 |
+
value_states = qkv[..., query_pos + self.num_key_value_heads * self.head_dim :]
|
360 |
+
|
361 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
362 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
363 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
364 |
+
|
365 |
+
kv_seq_len = key_states.shape[-2]
|
366 |
+
if past_key_value is not None:
|
367 |
+
if self.layer_idx is None:
|
368 |
+
raise ValueError(
|
369 |
+
f'The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} '
|
370 |
+
'for auto-regressive decoding with k/v caching, please make sure to initialize the attention class '
|
371 |
+
'with a layer index.'
|
372 |
+
)
|
373 |
+
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
374 |
+
cos, sin = self.rotary_emb(value_states, position_ids, seq_len=kv_seq_len)
|
375 |
+
|
376 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
377 |
+
|
378 |
+
if past_key_value is not None:
|
379 |
+
cache_kwargs = {'sin': sin, 'cos': cos} # Specific to RoPE models
|
380 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
381 |
+
|
382 |
+
# repeat k/v heads if n_kv_heads < n_heads
|
383 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
384 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
385 |
+
|
386 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
387 |
+
|
388 |
+
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
389 |
+
raise ValueError(
|
390 |
+
f'Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is'
|
391 |
+
f' {attn_weights.size()}'
|
392 |
+
)
|
393 |
+
|
394 |
+
if attention_mask is not None:
|
395 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
396 |
+
raise ValueError(
|
397 |
+
f'Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}'
|
398 |
+
)
|
399 |
+
attn_weights = attn_weights + attention_mask
|
400 |
+
|
401 |
+
# upcast attention to fp32
|
402 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(value_states.dtype)
|
403 |
+
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
|
404 |
+
|
405 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
406 |
+
|
407 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
408 |
+
raise ValueError(
|
409 |
+
f'`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is'
|
410 |
+
f' {attn_output.size()}'
|
411 |
+
)
|
412 |
+
|
413 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
414 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
415 |
+
|
416 |
+
attn_output = self.o_proj(attn_output)
|
417 |
+
|
418 |
+
if not output_attentions:
|
419 |
+
attn_weights = None
|
420 |
+
|
421 |
+
return attn_output, attn_weights, past_key_value
|
422 |
+
|
423 |
+
|
424 |
+
class Phi3FlashAttention2(Phi3Attention):
|
425 |
+
"""
|
426 |
+
Phi-3 flash attention module. This module inherits from `Phi3Attention` as the weights of the module stays
|
427 |
+
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
428 |
+
flash attention and deal with padding tokens in case the input contains any of them.
|
429 |
+
"""
|
430 |
+
|
431 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
|
432 |
+
def __init__(self, *args, **kwargs):
|
433 |
+
super().__init__(*args, **kwargs)
|
434 |
+
|
435 |
+
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
436 |
+
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
437 |
+
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
438 |
+
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
439 |
+
|
440 |
+
def forward(
|
441 |
+
self,
|
442 |
+
hidden_states: torch.Tensor,
|
443 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
444 |
+
position_ids: Optional[torch.LongTensor] = None,
|
445 |
+
past_key_value: Optional[Cache] = None,
|
446 |
+
output_attentions: bool = False,
|
447 |
+
use_cache: bool = False,
|
448 |
+
**kwargs,
|
449 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
450 |
+
# Phi3FlashAttention2 attention does not support output_attentions
|
451 |
+
|
452 |
+
if not _flash_supports_window_size:
|
453 |
+
logger.warning_once(
|
454 |
+
"The current flash attention version does not support sliding window attention. Please use `attn_implementation='eager'` or upgrade flash-attn library."
|
455 |
+
)
|
456 |
+
raise ValueError('The current flash attention version does not support sliding window attention.')
|
457 |
+
|
458 |
+
output_attentions = False
|
459 |
+
|
460 |
+
if 'padding_mask' in kwargs:
|
461 |
+
warnings.warn(
|
462 |
+
'Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`'
|
463 |
+
)
|
464 |
+
|
465 |
+
# overwrite attention_mask with padding_mask
|
466 |
+
attention_mask = kwargs.pop('padding_mask')
|
467 |
+
|
468 |
+
bsz, q_len, _ = hidden_states.size()
|
469 |
+
|
470 |
+
qkv = self.qkv_proj(hidden_states)
|
471 |
+
query_pos = self.num_heads * self.head_dim
|
472 |
+
query_states = qkv[..., :query_pos]
|
473 |
+
key_states = qkv[..., query_pos : query_pos + self.num_key_value_heads * self.head_dim]
|
474 |
+
value_states = qkv[..., query_pos + self.num_key_value_heads * self.head_dim :]
|
475 |
+
|
476 |
+
# Flash attention requires the input to have the shape
|
477 |
+
# batch_size x seq_length x head_dim x hidden_dim
|
478 |
+
# therefore we just need to keep the original shape
|
479 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
480 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
481 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
482 |
+
|
483 |
+
kv_seq_len = key_states.shape[-2]
|
484 |
+
if past_key_value is not None:
|
485 |
+
if self.layer_idx is None:
|
486 |
+
raise ValueError(
|
487 |
+
f'The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} '
|
488 |
+
'for auto-regressive decoding with k/v caching, please make sure to initialize the attention class '
|
489 |
+
'with a layer index.'
|
490 |
+
)
|
491 |
+
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
492 |
+
|
493 |
+
# Because the input can be padded, the absolute sequence length depends on the max position id.
|
494 |
+
rotary_seq_len = max(kv_seq_len, position_ids[:, -1].max().item()) + 1
|
495 |
+
cos, sin = self.rotary_emb(value_states, position_ids, seq_len=rotary_seq_len)
|
496 |
+
|
497 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
498 |
+
|
499 |
+
use_sliding_windows = (
|
500 |
+
_flash_supports_window_size
|
501 |
+
and getattr(self.config, 'sliding_window', None) is not None
|
502 |
+
and kv_seq_len > self.config.sliding_window
|
503 |
+
)
|
504 |
+
|
505 |
+
if past_key_value is not None:
|
506 |
+
# Activate slicing cache only if the config has a value `sliding_windows` attribute
|
507 |
+
cache_has_contents = past_key_value.get_seq_length(self.layer_idx) > 0
|
508 |
+
if (
|
509 |
+
getattr(self.config, 'sliding_window', None) is not None
|
510 |
+
and kv_seq_len > self.config.sliding_window
|
511 |
+
and cache_has_contents
|
512 |
+
):
|
513 |
+
slicing_tokens = 1 - self.config.sliding_window
|
514 |
+
|
515 |
+
past_key = past_key_value[self.layer_idx][0]
|
516 |
+
past_value = past_key_value[self.layer_idx][1]
|
517 |
+
|
518 |
+
past_key = past_key[:, :, slicing_tokens:, :].contiguous()
|
519 |
+
past_value = past_value[:, :, slicing_tokens:, :].contiguous()
|
520 |
+
|
521 |
+
if past_key.shape[-2] != self.config.sliding_window - 1:
|
522 |
+
raise ValueError(
|
523 |
+
f'past key must have a shape of (`batch_size, num_heads, self.config.sliding_window-1, head_dim`), got'
|
524 |
+
f' {past_key.shape}'
|
525 |
+
)
|
526 |
+
|
527 |
+
if attention_mask is not None:
|
528 |
+
attention_mask = attention_mask[:, slicing_tokens:]
|
529 |
+
attention_mask = torch.cat([attention_mask, torch.ones_like(attention_mask[:, -1:])], dim=-1)
|
530 |
+
|
531 |
+
cache_kwargs = {'sin': sin, 'cos': cos} # Specific to RoPE models
|
532 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
533 |
+
|
534 |
+
# repeat k/v heads if n_kv_heads < n_heads
|
535 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
536 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
537 |
+
|
538 |
+
attn_dropout = self.attention_dropout if self.training else 0.0
|
539 |
+
|
540 |
+
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
541 |
+
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
542 |
+
# cast them back in the correct dtype just to be sure everything works as expected.
|
543 |
+
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
|
544 |
+
# in fp32.
|
545 |
+
|
546 |
+
if query_states.dtype == torch.float32:
|
547 |
+
if torch.is_autocast_enabled():
|
548 |
+
target_dtype = torch.get_autocast_gpu_dtype()
|
549 |
+
# Handle the case where the model is quantized
|
550 |
+
elif hasattr(self.config, '_pre_quantization_dtype'):
|
551 |
+
target_dtype = self.config._pre_quantization_dtype
|
552 |
+
else:
|
553 |
+
target_dtype = self.qkv_proj.weight.dtype
|
554 |
+
|
555 |
+
logger.warning_once(
|
556 |
+
f'The input hidden states seems to be silently casted in float32, this might be related to'
|
557 |
+
f' the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in'
|
558 |
+
f' {target_dtype}.'
|
559 |
+
)
|
560 |
+
|
561 |
+
query_states = query_states.to(target_dtype)
|
562 |
+
key_states = key_states.to(target_dtype)
|
563 |
+
value_states = value_states.to(target_dtype)
|
564 |
+
|
565 |
+
# Reashape to the expected shape for Flash Attention
|
566 |
+
query_states = query_states.transpose(1, 2)
|
567 |
+
key_states = key_states.transpose(1, 2)
|
568 |
+
value_states = value_states.transpose(1, 2)
|
569 |
+
|
570 |
+
attn_output = self._flash_attention_forward(
|
571 |
+
query_states,
|
572 |
+
key_states,
|
573 |
+
value_states,
|
574 |
+
attention_mask,
|
575 |
+
q_len,
|
576 |
+
dropout=attn_dropout,
|
577 |
+
use_sliding_windows=use_sliding_windows,
|
578 |
+
)
|
579 |
+
|
580 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
|
581 |
+
attn_output = self.o_proj(attn_output)
|
582 |
+
|
583 |
+
if not output_attentions:
|
584 |
+
attn_weights = None
|
585 |
+
|
586 |
+
return attn_output, attn_weights, past_key_value
|
587 |
+
|
588 |
+
# Copied from transformers.models.mistral.modeling_mistral.MistralFlashAttention2._flash_attention_forward
|
589 |
+
def _flash_attention_forward(
|
590 |
+
self,
|
591 |
+
query_states,
|
592 |
+
key_states,
|
593 |
+
value_states,
|
594 |
+
attention_mask,
|
595 |
+
query_length,
|
596 |
+
dropout=0.0,
|
597 |
+
softmax_scale=None,
|
598 |
+
use_sliding_windows=False,
|
599 |
+
):
|
600 |
+
"""
|
601 |
+
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
602 |
+
first unpad the input, then computes the attention scores and pad the final attention scores.
|
603 |
+
|
604 |
+
Args:
|
605 |
+
query_states (`torch.Tensor`):
|
606 |
+
Input query states to be passed to Flash Attention API
|
607 |
+
key_states (`torch.Tensor`):
|
608 |
+
Input key states to be passed to Flash Attention API
|
609 |
+
value_states (`torch.Tensor`):
|
610 |
+
Input value states to be passed to Flash Attention API
|
611 |
+
attention_mask (`torch.Tensor`):
|
612 |
+
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
613 |
+
position of padding tokens and 1 for the position of non-padding tokens.
|
614 |
+
dropout (`float`):
|
615 |
+
Attention dropout
|
616 |
+
softmax_scale (`float`, *optional*):
|
617 |
+
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
618 |
+
use_sliding_windows (`bool`, *optional*):
|
619 |
+
Whether to activate sliding window attention.
|
620 |
+
"""
|
621 |
+
if not self._flash_attn_uses_top_left_mask:
|
622 |
+
causal = self.is_causal
|
623 |
+
else:
|
624 |
+
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
|
625 |
+
causal = self.is_causal and query_length != 1
|
626 |
+
|
627 |
+
# Contains at least one padding token in the sequence
|
628 |
+
if attention_mask is not None:
|
629 |
+
batch_size = query_states.shape[0]
|
630 |
+
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
|
631 |
+
query_states, key_states, value_states, attention_mask, query_length
|
632 |
+
)
|
633 |
+
|
634 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
635 |
+
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
636 |
+
|
637 |
+
if not use_sliding_windows:
|
638 |
+
attn_output_unpad = flash_attn_varlen_func(
|
639 |
+
query_states,
|
640 |
+
key_states,
|
641 |
+
value_states,
|
642 |
+
cu_seqlens_q=cu_seqlens_q,
|
643 |
+
cu_seqlens_k=cu_seqlens_k,
|
644 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
645 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
646 |
+
dropout_p=dropout,
|
647 |
+
softmax_scale=softmax_scale,
|
648 |
+
causal=causal,
|
649 |
+
)
|
650 |
+
else:
|
651 |
+
attn_output_unpad = flash_attn_varlen_func(
|
652 |
+
query_states,
|
653 |
+
key_states,
|
654 |
+
value_states,
|
655 |
+
cu_seqlens_q=cu_seqlens_q,
|
656 |
+
cu_seqlens_k=cu_seqlens_k,
|
657 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
658 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
659 |
+
dropout_p=dropout,
|
660 |
+
softmax_scale=softmax_scale,
|
661 |
+
causal=causal,
|
662 |
+
window_size=(self.config.sliding_window, self.config.sliding_window),
|
663 |
+
)
|
664 |
+
|
665 |
+
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
|
666 |
+
else:
|
667 |
+
if not use_sliding_windows:
|
668 |
+
attn_output = flash_attn_func(
|
669 |
+
query_states,
|
670 |
+
key_states,
|
671 |
+
value_states,
|
672 |
+
dropout,
|
673 |
+
softmax_scale=softmax_scale,
|
674 |
+
causal=causal,
|
675 |
+
)
|
676 |
+
else:
|
677 |
+
attn_output = flash_attn_func(
|
678 |
+
query_states,
|
679 |
+
key_states,
|
680 |
+
value_states,
|
681 |
+
dropout,
|
682 |
+
softmax_scale=softmax_scale,
|
683 |
+
causal=causal,
|
684 |
+
window_size=(self.config.sliding_window, self.config.sliding_window),
|
685 |
+
)
|
686 |
+
|
687 |
+
return attn_output
|
688 |
+
|
689 |
+
# Copied from transformers.models.mistral.modeling_mistral.MistralFlashAttention2._upad_input
|
690 |
+
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
691 |
+
batch_size, kv_seq_len, num_heads, head_dim = key_layer.shape
|
692 |
+
|
693 |
+
# On the first iteration we need to properly re-create the padding mask
|
694 |
+
# by slicing it on the proper place
|
695 |
+
if kv_seq_len != attention_mask.shape[-1]:
|
696 |
+
attention_mask_num_tokens = attention_mask.shape[-1]
|
697 |
+
attention_mask = attention_mask[:, attention_mask_num_tokens - kv_seq_len :]
|
698 |
+
|
699 |
+
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
700 |
+
|
701 |
+
key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
|
702 |
+
value_layer = index_first_axis(value_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
|
703 |
+
|
704 |
+
if query_length == kv_seq_len:
|
705 |
+
query_layer = index_first_axis(
|
706 |
+
query_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k
|
707 |
+
)
|
708 |
+
cu_seqlens_q = cu_seqlens_k
|
709 |
+
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
710 |
+
indices_q = indices_k
|
711 |
+
elif query_length == 1:
|
712 |
+
max_seqlen_in_batch_q = 1
|
713 |
+
cu_seqlens_q = torch.arange(
|
714 |
+
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
715 |
+
) # There is a memcpy here, that is very bad.
|
716 |
+
indices_q = cu_seqlens_q[:-1]
|
717 |
+
query_layer = query_layer.squeeze(1)
|
718 |
+
else:
|
719 |
+
# The -q_len: slice assumes left padding.
|
720 |
+
attention_mask = attention_mask[:, -query_length:]
|
721 |
+
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
|
722 |
+
|
723 |
+
return (
|
724 |
+
query_layer,
|
725 |
+
key_layer,
|
726 |
+
value_layer,
|
727 |
+
indices_q,
|
728 |
+
(cu_seqlens_q, cu_seqlens_k),
|
729 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
730 |
+
)
|
731 |
+
|
732 |
+
|
733 |
+
# copied from transformers.models.llama.modeling_llama.LlamaSdpaAttention with Llama->Phi3
|
734 |
+
# TODO @Arthur no longer copied from LLama after static cache
|
735 |
+
class Phi3SdpaAttention(Phi3Attention):
|
736 |
+
"""
|
737 |
+
Phi3 attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
|
738 |
+
`Phi3Attention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
|
739 |
+
SDPA API.
|
740 |
+
"""
|
741 |
+
|
742 |
+
# Adapted from Phi3Attention.forward
|
743 |
+
def forward(
|
744 |
+
self,
|
745 |
+
hidden_states: torch.Tensor,
|
746 |
+
attention_mask: Optional[torch.Tensor] = None,
|
747 |
+
position_ids: Optional[torch.LongTensor] = None,
|
748 |
+
past_key_value: Optional[Cache] = None,
|
749 |
+
output_attentions: bool = False,
|
750 |
+
use_cache: bool = False,
|
751 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
752 |
+
if output_attentions:
|
753 |
+
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
|
754 |
+
logger.warning_once(
|
755 |
+
'Phi3Model is using Phi3SdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, '
|
756 |
+
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
757 |
+
)
|
758 |
+
return super().forward(
|
759 |
+
hidden_states=hidden_states,
|
760 |
+
attention_mask=attention_mask,
|
761 |
+
position_ids=position_ids,
|
762 |
+
past_key_value=past_key_value,
|
763 |
+
output_attentions=output_attentions,
|
764 |
+
use_cache=use_cache,
|
765 |
+
)
|
766 |
+
|
767 |
+
bsz, q_len, _ = hidden_states.size()
|
768 |
+
|
769 |
+
qkv = self.qkv_proj(hidden_states)
|
770 |
+
query_pos = self.num_heads * self.head_dim
|
771 |
+
query_states = qkv[..., :query_pos]
|
772 |
+
key_states = qkv[..., query_pos : query_pos + self.num_key_value_heads * self.head_dim]
|
773 |
+
value_states = qkv[..., query_pos + self.num_key_value_heads * self.head_dim :]
|
774 |
+
|
775 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
776 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
777 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
778 |
+
|
779 |
+
kv_seq_len = key_states.shape[-2]
|
780 |
+
if past_key_value is not None:
|
781 |
+
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
782 |
+
cos, sin = self.rotary_emb(value_states, position_ids, seq_len=kv_seq_len)
|
783 |
+
|
784 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
785 |
+
|
786 |
+
if past_key_value is not None:
|
787 |
+
cache_kwargs = {'sin': sin, 'cos': cos} # Specific to RoPE models
|
788 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
789 |
+
|
790 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
791 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
792 |
+
|
793 |
+
if attention_mask is not None:
|
794 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
795 |
+
raise ValueError(
|
796 |
+
f'Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}'
|
797 |
+
)
|
798 |
+
|
799 |
+
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
|
800 |
+
# Reference: https://github.com/pytorch/pytorch/issues/112577.
|
801 |
+
if query_states.device.type == 'cuda' and attention_mask is not None:
|
802 |
+
query_states = query_states.contiguous()
|
803 |
+
key_states = key_states.contiguous()
|
804 |
+
value_states = value_states.contiguous()
|
805 |
+
|
806 |
+
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
807 |
+
query_states,
|
808 |
+
key_states,
|
809 |
+
value_states,
|
810 |
+
attn_mask=attention_mask,
|
811 |
+
dropout_p=self.attention_dropout if self.training else 0.0,
|
812 |
+
# The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
|
813 |
+
is_causal=self.is_causal and attention_mask is None and q_len > 1,
|
814 |
+
)
|
815 |
+
|
816 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
817 |
+
attn_output = attn_output.view(bsz, q_len, self.hidden_size)
|
818 |
+
|
819 |
+
attn_output = self.o_proj(attn_output)
|
820 |
+
|
821 |
+
return attn_output, None, past_key_value
|
822 |
+
|
823 |
+
|
824 |
+
PHI3_ATTENTION_CLASSES = {
|
825 |
+
'eager': Phi3Attention,
|
826 |
+
'flash_attention_2': Phi3FlashAttention2,
|
827 |
+
'sdpa': Phi3SdpaAttention,
|
828 |
+
}
|
829 |
+
|
830 |
+
|
831 |
+
class Phi3DecoderLayer(nn.Module):
|
832 |
+
def __init__(self, config: Phi3Config, layer_idx: int):
|
833 |
+
super().__init__()
|
834 |
+
|
835 |
+
self.config = config
|
836 |
+
self.self_attn = PHI3_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx=layer_idx)
|
837 |
+
|
838 |
+
self.mlp = Phi3MLP(config)
|
839 |
+
self.input_layernorm = Phi3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
840 |
+
|
841 |
+
self.resid_attn_dropout = nn.Dropout(config.resid_pdrop)
|
842 |
+
self.resid_mlp_dropout = nn.Dropout(config.resid_pdrop)
|
843 |
+
self.post_attention_layernorm = Phi3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
844 |
+
|
845 |
+
def forward(
|
846 |
+
self,
|
847 |
+
hidden_states: torch.Tensor,
|
848 |
+
attention_mask: Optional[torch.Tensor] = None,
|
849 |
+
position_ids: Optional[torch.LongTensor] = None,
|
850 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
851 |
+
output_attentions: Optional[bool] = False,
|
852 |
+
use_cache: Optional[bool] = False,
|
853 |
+
**kwargs,
|
854 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
855 |
+
if 'padding_mask' in kwargs:
|
856 |
+
warnings.warn(
|
857 |
+
'Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`'
|
858 |
+
)
|
859 |
+
"""
|
860 |
+
Args:
|
861 |
+
hidden_states (`torch.FloatTensor`):
|
862 |
+
input to the layer of shape `(batch, seq_len, embed_dim)`
|
863 |
+
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
|
864 |
+
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
865 |
+
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
866 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range
|
867 |
+
`[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids)
|
868 |
+
output_attentions (`bool`, *optional*):
|
869 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
870 |
+
returned tensors for more detail.
|
871 |
+
use_cache (`bool`, *optional*):
|
872 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
873 |
+
(see `past_key_values`).
|
874 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
875 |
+
"""
|
876 |
+
|
877 |
+
residual = hidden_states
|
878 |
+
|
879 |
+
hidden_states = self.input_layernorm(hidden_states)
|
880 |
+
|
881 |
+
# Self Attention
|
882 |
+
attn_outputs, self_attn_weights, present_key_value = self.self_attn(
|
883 |
+
hidden_states=hidden_states,
|
884 |
+
attention_mask=attention_mask,
|
885 |
+
position_ids=position_ids,
|
886 |
+
past_key_value=past_key_value,
|
887 |
+
output_attentions=output_attentions,
|
888 |
+
use_cache=use_cache,
|
889 |
+
)
|
890 |
+
|
891 |
+
hidden_states = residual + self.resid_attn_dropout(attn_outputs)
|
892 |
+
|
893 |
+
residual = hidden_states
|
894 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
895 |
+
hidden_states = self.mlp(hidden_states)
|
896 |
+
hidden_states = residual + self.resid_mlp_dropout(hidden_states)
|
897 |
+
|
898 |
+
outputs = (hidden_states,)
|
899 |
+
|
900 |
+
if output_attentions:
|
901 |
+
outputs += (self_attn_weights,)
|
902 |
+
|
903 |
+
if use_cache:
|
904 |
+
outputs += (present_key_value,)
|
905 |
+
|
906 |
+
return outputs
|
907 |
+
|
908 |
+
|
909 |
+
PHI3_START_DOCSTRING = r"""
|
910 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
911 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
912 |
+
etc.)
|
913 |
+
|
914 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
915 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
916 |
+
and behavior.
|
917 |
+
|
918 |
+
Parameters:
|
919 |
+
config ([`Phi3Config`]):
|
920 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
921 |
+
load the weights associated with the model, only the configuration. Check out the
|
922 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
923 |
+
"""
|
924 |
+
|
925 |
+
|
926 |
+
@add_start_docstrings(
|
927 |
+
'The bare Phi-3 model outputting raw hidden-states without any specific head on top.',
|
928 |
+
PHI3_START_DOCSTRING,
|
929 |
+
)
|
930 |
+
class Phi3PreTrainedModel(PreTrainedModel):
|
931 |
+
config_class = Phi3Config
|
932 |
+
base_model_prefix = 'model'
|
933 |
+
supports_gradient_checkpointing = True
|
934 |
+
_no_split_modules = ['Phi3DecoderLayer']
|
935 |
+
_skip_keys_device_placement = 'past_key_values'
|
936 |
+
_supports_flash_attn_2 = True
|
937 |
+
_supports_sdpa = False
|
938 |
+
_supports_cache_class = True
|
939 |
+
|
940 |
+
_version = '0.0.5'
|
941 |
+
|
942 |
+
def __init__(self, config: Phi3Config):
|
943 |
+
if not has_flash_attn:
|
944 |
+
config._attn_implementation = 'eager'
|
945 |
+
print('Warning: Flash attention is not available, using eager attention instead.')
|
946 |
+
super().__init__(config)
|
947 |
+
|
948 |
+
def _init_weights(self, module):
|
949 |
+
std = self.config.initializer_range
|
950 |
+
if isinstance(module, nn.Linear):
|
951 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
952 |
+
if module.bias is not None:
|
953 |
+
module.bias.data.zero_()
|
954 |
+
elif isinstance(module, nn.Embedding):
|
955 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
956 |
+
if module.padding_idx is not None:
|
957 |
+
module.weight.data[module.padding_idx].zero_()
|
958 |
+
|
959 |
+
|
960 |
+
PHI3_INPUTS_DOCSTRING = r"""
|
961 |
+
Args:
|
962 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
963 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
964 |
+
it.
|
965 |
+
|
966 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
967 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
968 |
+
|
969 |
+
[What are input IDs?](../glossary#input-ids)
|
970 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
971 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
972 |
+
|
973 |
+
- 1 for tokens that are **not masked**,
|
974 |
+
- 0 for tokens that are **masked**.
|
975 |
+
|
976 |
+
[What are attention masks?](../glossary#attention-mask)
|
977 |
+
|
978 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
979 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
980 |
+
|
981 |
+
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
|
982 |
+
`past_key_values`).
|
983 |
+
|
984 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
985 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
986 |
+
information on the default strategy.
|
987 |
+
|
988 |
+
- 1 indicates the head is **not masked**,
|
989 |
+
- 0 indicates the head is **masked**.
|
990 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
991 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
992 |
+
config.n_positions - 1]`.
|
993 |
+
|
994 |
+
[What are position IDs?](../glossary#position-ids)
|
995 |
+
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
|
996 |
+
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
997 |
+
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
|
998 |
+
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
|
999 |
+
|
1000 |
+
Two formats are allowed:
|
1001 |
+
- a [`~cache_utils.Cache`] instance;
|
1002 |
+
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
1003 |
+
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
|
1004 |
+
cache format.
|
1005 |
+
|
1006 |
+
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
|
1007 |
+
legacy cache format will be returned.
|
1008 |
+
|
1009 |
+
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
1010 |
+
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
1011 |
+
of shape `(batch_size, sequence_length)`.
|
1012 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
1013 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
1014 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
1015 |
+
model's internal embedding lookup matrix.
|
1016 |
+
use_cache (`bool`, *optional*):
|
1017 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
1018 |
+
`past_key_values`).
|
1019 |
+
output_attentions (`bool`, *optional*):
|
1020 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
1021 |
+
tensors for more detail.
|
1022 |
+
output_hidden_states (`bool`, *optional*):
|
1023 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
1024 |
+
more detail.
|
1025 |
+
return_dict (`bool`, *optional*):
|
1026 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
1027 |
+
"""
|
1028 |
+
|
1029 |
+
|
1030 |
+
@add_start_docstrings(
|
1031 |
+
'The bare Phi-3 model outputting raw hidden-states without any specific head on top.',
|
1032 |
+
PHI3_START_DOCSTRING,
|
1033 |
+
)
|
1034 |
+
class Phi3Model(Phi3PreTrainedModel):
|
1035 |
+
"""
|
1036 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Phi3DecoderLayer`]
|
1037 |
+
|
1038 |
+
Args:
|
1039 |
+
config: Phi3Config
|
1040 |
+
"""
|
1041 |
+
|
1042 |
+
def __init__(self, config: Phi3Config):
|
1043 |
+
super().__init__(config)
|
1044 |
+
self.padding_idx = config.pad_token_id
|
1045 |
+
self.vocab_size = config.vocab_size
|
1046 |
+
|
1047 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
1048 |
+
self.embed_dropout = nn.Dropout(config.embd_pdrop)
|
1049 |
+
self.layers = nn.ModuleList(
|
1050 |
+
[Phi3DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
1051 |
+
)
|
1052 |
+
self._attn_implementation = config._attn_implementation
|
1053 |
+
|
1054 |
+
self.norm = Phi3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
1055 |
+
|
1056 |
+
self.gradient_checkpointing = False
|
1057 |
+
# Initialize weights and apply final processing
|
1058 |
+
self.post_init()
|
1059 |
+
|
1060 |
+
def get_input_embeddings(self):
|
1061 |
+
return self.embed_tokens
|
1062 |
+
|
1063 |
+
def set_input_embeddings(self, value):
|
1064 |
+
self.embed_tokens = value
|
1065 |
+
|
1066 |
+
@add_start_docstrings_to_model_forward(PHI3_INPUTS_DOCSTRING)
|
1067 |
+
def forward(
|
1068 |
+
self,
|
1069 |
+
input_ids: torch.LongTensor = None,
|
1070 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1071 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1072 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1073 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1074 |
+
use_cache: Optional[bool] = None,
|
1075 |
+
output_attentions: Optional[bool] = None,
|
1076 |
+
output_hidden_states: Optional[bool] = None,
|
1077 |
+
return_dict: Optional[bool] = None,
|
1078 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
1079 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1080 |
+
output_hidden_states = (
|
1081 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1082 |
+
)
|
1083 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
1084 |
+
|
1085 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1086 |
+
|
1087 |
+
# retrieve input_ids and inputs_embeds
|
1088 |
+
if input_ids is not None and inputs_embeds is not None:
|
1089 |
+
raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time')
|
1090 |
+
elif input_ids is not None:
|
1091 |
+
batch_size, seq_length = input_ids.shape[:2]
|
1092 |
+
elif inputs_embeds is not None:
|
1093 |
+
batch_size, seq_length = inputs_embeds.shape[:2]
|
1094 |
+
else:
|
1095 |
+
raise ValueError('You have to specify either input_ids or inputs_embeds')
|
1096 |
+
|
1097 |
+
past_key_values_length = 0
|
1098 |
+
|
1099 |
+
if self.gradient_checkpointing and self.training:
|
1100 |
+
if use_cache:
|
1101 |
+
logger.warning_once(
|
1102 |
+
'`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...'
|
1103 |
+
)
|
1104 |
+
use_cache = False
|
1105 |
+
|
1106 |
+
if use_cache:
|
1107 |
+
use_legacy_cache = not isinstance(past_key_values, Cache)
|
1108 |
+
if use_legacy_cache:
|
1109 |
+
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
1110 |
+
past_key_values_length = past_key_values.get_usable_length(seq_length)
|
1111 |
+
|
1112 |
+
if position_ids is None:
|
1113 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
1114 |
+
position_ids = torch.arange(
|
1115 |
+
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
1116 |
+
)
|
1117 |
+
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
|
1118 |
+
else:
|
1119 |
+
position_ids = position_ids.view(-1, seq_length).long()
|
1120 |
+
|
1121 |
+
if inputs_embeds is None:
|
1122 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
1123 |
+
|
1124 |
+
if attention_mask is not None and self._attn_implementation == 'flash_attention_2' and use_cache:
|
1125 |
+
is_padding_right = attention_mask[:, -1].sum().item() != batch_size
|
1126 |
+
if is_padding_right:
|
1127 |
+
raise ValueError(
|
1128 |
+
"You are attempting to perform batched generation with padding_side='right'"
|
1129 |
+
' this may lead to unexpected behaviour for Flash Attention version of Phi3. Make sure to '
|
1130 |
+
" call `tokenizer.padding_side = 'left'` before tokenizing the input. "
|
1131 |
+
)
|
1132 |
+
|
1133 |
+
if self._attn_implementation == 'flash_attention_2':
|
1134 |
+
# 2d mask is passed through the layers
|
1135 |
+
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
|
1136 |
+
else:
|
1137 |
+
# 4d mask is passed through the layers
|
1138 |
+
attention_mask = _prepare_4d_causal_attention_mask(
|
1139 |
+
attention_mask,
|
1140 |
+
(batch_size, seq_length),
|
1141 |
+
inputs_embeds,
|
1142 |
+
past_key_values_length,
|
1143 |
+
sliding_window=self.config.sliding_window,
|
1144 |
+
)
|
1145 |
+
|
1146 |
+
hidden_states = inputs_embeds
|
1147 |
+
|
1148 |
+
# decoder layers
|
1149 |
+
all_hidden_states = () if output_hidden_states else None
|
1150 |
+
all_self_attns = () if output_attentions else None
|
1151 |
+
next_decoder_cache = None
|
1152 |
+
|
1153 |
+
for decoder_layer in self.layers:
|
1154 |
+
if output_hidden_states:
|
1155 |
+
all_hidden_states += (hidden_states,)
|
1156 |
+
|
1157 |
+
if self.gradient_checkpointing and self.training:
|
1158 |
+
layer_outputs = self._gradient_checkpointing_func(
|
1159 |
+
decoder_layer.__call__,
|
1160 |
+
hidden_states,
|
1161 |
+
attention_mask,
|
1162 |
+
position_ids,
|
1163 |
+
past_key_values,
|
1164 |
+
output_attentions,
|
1165 |
+
use_cache,
|
1166 |
+
)
|
1167 |
+
else:
|
1168 |
+
layer_outputs = decoder_layer(
|
1169 |
+
hidden_states,
|
1170 |
+
attention_mask=attention_mask,
|
1171 |
+
position_ids=position_ids,
|
1172 |
+
past_key_value=past_key_values,
|
1173 |
+
output_attentions=output_attentions,
|
1174 |
+
use_cache=use_cache,
|
1175 |
+
)
|
1176 |
+
|
1177 |
+
hidden_states = layer_outputs[0]
|
1178 |
+
|
1179 |
+
if use_cache:
|
1180 |
+
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
1181 |
+
|
1182 |
+
if output_attentions:
|
1183 |
+
all_self_attns += (layer_outputs[1],)
|
1184 |
+
|
1185 |
+
hidden_states = self.norm(hidden_states)
|
1186 |
+
|
1187 |
+
# add hidden states from the last decoder layer
|
1188 |
+
if output_hidden_states:
|
1189 |
+
all_hidden_states += (hidden_states,)
|
1190 |
+
|
1191 |
+
next_cache = None
|
1192 |
+
if use_cache:
|
1193 |
+
next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
|
1194 |
+
if not return_dict:
|
1195 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
1196 |
+
return BaseModelOutputWithPast(
|
1197 |
+
last_hidden_state=hidden_states,
|
1198 |
+
past_key_values=next_cache,
|
1199 |
+
hidden_states=all_hidden_states,
|
1200 |
+
attentions=all_self_attns,
|
1201 |
+
)
|
1202 |
+
|
1203 |
+
|
1204 |
+
class Phi3ForCausalLM(Phi3PreTrainedModel):
|
1205 |
+
_tied_weights_keys = ['lm_head.weight']
|
1206 |
+
|
1207 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.__init__ with Llama->Phi3
|
1208 |
+
def __init__(self, config):
|
1209 |
+
super().__init__(config)
|
1210 |
+
self.model = Phi3Model(config)
|
1211 |
+
self.vocab_size = config.vocab_size
|
1212 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
1213 |
+
|
1214 |
+
# Initialize weights and apply final processing
|
1215 |
+
self.post_init()
|
1216 |
+
|
1217 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_input_embeddings
|
1218 |
+
def get_input_embeddings(self):
|
1219 |
+
return self.model.embed_tokens
|
1220 |
+
|
1221 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_input_embeddings
|
1222 |
+
def set_input_embeddings(self, value):
|
1223 |
+
self.model.embed_tokens = value
|
1224 |
+
|
1225 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_output_embeddings
|
1226 |
+
def get_output_embeddings(self):
|
1227 |
+
return self.lm_head
|
1228 |
+
|
1229 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_output_embeddings
|
1230 |
+
def set_output_embeddings(self, new_embeddings):
|
1231 |
+
self.lm_head = new_embeddings
|
1232 |
+
|
1233 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_decoder
|
1234 |
+
def set_decoder(self, decoder):
|
1235 |
+
self.model = decoder
|
1236 |
+
|
1237 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_decoder
|
1238 |
+
def get_decoder(self):
|
1239 |
+
return self.model
|
1240 |
+
|
1241 |
+
# Ignore copy
|
1242 |
+
@add_start_docstrings_to_model_forward(PHI3_INPUTS_DOCSTRING)
|
1243 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
1244 |
+
def forward(
|
1245 |
+
self,
|
1246 |
+
input_ids: torch.LongTensor = None,
|
1247 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1248 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1249 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1250 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1251 |
+
labels: Optional[torch.LongTensor] = None,
|
1252 |
+
use_cache: Optional[bool] = None,
|
1253 |
+
output_attentions: Optional[bool] = None,
|
1254 |
+
output_hidden_states: Optional[bool] = None,
|
1255 |
+
return_dict: Optional[bool] = None,
|
1256 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
1257 |
+
r"""
|
1258 |
+
Args:
|
1259 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1260 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
1261 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
1262 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
1263 |
+
|
1264 |
+
Returns:
|
1265 |
+
|
1266 |
+
Example:
|
1267 |
+
|
1268 |
+
```python
|
1269 |
+
>>> from transformers import AutoTokenizer, Phi3ForCausalLM
|
1270 |
+
|
1271 |
+
>>> model = Phi3ForCausalLM.from_pretrained("microsoft/phi-3-mini-4k-instruct")
|
1272 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-3-mini-4k-instruct")
|
1273 |
+
|
1274 |
+
>>> prompt = "This is an example script ."
|
1275 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
1276 |
+
|
1277 |
+
>>> # Generate
|
1278 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
1279 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
1280 |
+
'This is an example script .\n Certainly! Below is a sample script that demonstrates a simple task, such as calculating the sum'
|
1281 |
+
```"""
|
1282 |
+
|
1283 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1284 |
+
output_hidden_states = (
|
1285 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1286 |
+
)
|
1287 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1288 |
+
|
1289 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
1290 |
+
outputs = self.model(
|
1291 |
+
input_ids=input_ids,
|
1292 |
+
attention_mask=attention_mask,
|
1293 |
+
position_ids=position_ids,
|
1294 |
+
past_key_values=past_key_values,
|
1295 |
+
inputs_embeds=inputs_embeds,
|
1296 |
+
use_cache=use_cache,
|
1297 |
+
output_attentions=output_attentions,
|
1298 |
+
output_hidden_states=output_hidden_states,
|
1299 |
+
return_dict=return_dict,
|
1300 |
+
)
|
1301 |
+
|
1302 |
+
hidden_states = outputs[0]
|
1303 |
+
logits = self.lm_head(hidden_states)
|
1304 |
+
logits = logits.float()
|
1305 |
+
|
1306 |
+
loss = None
|
1307 |
+
if labels is not None:
|
1308 |
+
# Shift so that tokens < n predict n
|
1309 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
1310 |
+
shift_labels = labels[..., 1:].contiguous()
|
1311 |
+
# Flatten the tokens
|
1312 |
+
loss_fct = CrossEntropyLoss()
|
1313 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
1314 |
+
shift_labels = shift_labels.view(-1)
|
1315 |
+
# Enable model parallelism
|
1316 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
1317 |
+
loss = loss_fct(shift_logits, shift_labels)
|
1318 |
+
|
1319 |
+
if not return_dict:
|
1320 |
+
output = (logits,) + outputs[1:]
|
1321 |
+
return (loss,) + output if loss is not None else output
|
1322 |
+
|
1323 |
+
return CausalLMOutputWithPast(
|
1324 |
+
loss=loss,
|
1325 |
+
logits=logits,
|
1326 |
+
past_key_values=outputs.past_key_values,
|
1327 |
+
hidden_states=outputs.hidden_states,
|
1328 |
+
attentions=outputs.attentions,
|
1329 |
+
)
|
1330 |
+
|
1331 |
+
# Copied from transformers.models.persimmon.modeling_persimmon.PersimmonForCausalLM.prepare_inputs_for_generation
|
1332 |
+
def prepare_inputs_for_generation(
|
1333 |
+
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
1334 |
+
):
|
1335 |
+
if past_key_values is not None:
|
1336 |
+
if isinstance(past_key_values, Cache):
|
1337 |
+
cache_length = past_key_values.get_seq_length()
|
1338 |
+
past_length = past_key_values.seen_tokens
|
1339 |
+
max_cache_length = past_key_values.get_max_length()
|
1340 |
+
else:
|
1341 |
+
cache_length = past_length = past_key_values[0][0].shape[2]
|
1342 |
+
max_cache_length = None
|
1343 |
+
|
1344 |
+
# Keep only the unprocessed tokens:
|
1345 |
+
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
1346 |
+
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
|
1347 |
+
# input)
|
1348 |
+
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
|
1349 |
+
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
1350 |
+
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
|
1351 |
+
# input_ids based on the past_length.
|
1352 |
+
elif past_length < input_ids.shape[1]:
|
1353 |
+
input_ids = input_ids[:, past_length:]
|
1354 |
+
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
|
1355 |
+
|
1356 |
+
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
|
1357 |
+
if (
|
1358 |
+
max_cache_length is not None
|
1359 |
+
and attention_mask is not None
|
1360 |
+
and cache_length + input_ids.shape[1] > max_cache_length
|
1361 |
+
):
|
1362 |
+
attention_mask = attention_mask[:, -max_cache_length:]
|
1363 |
+
|
1364 |
+
position_ids = kwargs.get('position_ids', None)
|
1365 |
+
if attention_mask is not None and position_ids is None:
|
1366 |
+
# create position_ids on the fly for batch generation
|
1367 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
1368 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
1369 |
+
if past_key_values:
|
1370 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
1371 |
+
|
1372 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
1373 |
+
if (inputs_embeds is not None and past_key_values is None) or (inputs_embeds is not None and len(past_key_values) == 0):
|
1374 |
+
model_inputs = {'inputs_embeds': inputs_embeds}
|
1375 |
+
else:
|
1376 |
+
model_inputs = {'input_ids': input_ids}
|
1377 |
+
|
1378 |
+
model_inputs.update(
|
1379 |
+
{
|
1380 |
+
'position_ids': position_ids,
|
1381 |
+
'past_key_values': past_key_values,
|
1382 |
+
'use_cache': kwargs.get('use_cache'),
|
1383 |
+
'attention_mask': attention_mask,
|
1384 |
+
}
|
1385 |
+
)
|
1386 |
+
return model_inputs
|
1387 |
+
|
1388 |
+
@staticmethod
|
1389 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM._reorder_cache
|
1390 |
+
def _reorder_cache(past_key_values, beam_idx):
|
1391 |
+
reordered_past = ()
|
1392 |
+
for layer_past in past_key_values:
|
1393 |
+
reordered_past += (
|
1394 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
1395 |
+
)
|
1396 |
+
return reordered_past
|
1397 |
+
|
1398 |
+
|
1399 |
+
@add_start_docstrings(
|
1400 |
+
"""
|
1401 |
+
The [`Phi3Model`] with a sequence classification head on top (linear layer).
|
1402 |
+
|
1403 |
+
[`Phi3ForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
1404 |
+
(e.g. GPT-2) do.
|
1405 |
+
|
1406 |
+
Since it does classification on the last token, it requires to know the position of the last token. If a
|
1407 |
+
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
1408 |
+
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
1409 |
+
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
1410 |
+
each row of the batch).
|
1411 |
+
""",
|
1412 |
+
PHI3_START_DOCSTRING,
|
1413 |
+
)
|
1414 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForSequenceClassification with Llama->Phi3, LLAMA->PHI3, self.transformer->self.model, transformer_outputs->model_outputs
|
1415 |
+
class Phi3ForSequenceClassification(Phi3PreTrainedModel):
|
1416 |
+
def __init__(self, config):
|
1417 |
+
super().__init__(config)
|
1418 |
+
self.num_labels = config.num_labels
|
1419 |
+
self.model = Phi3Model(config)
|
1420 |
+
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
|
1421 |
+
|
1422 |
+
# Initialize weights and apply final processing
|
1423 |
+
self.post_init()
|
1424 |
+
|
1425 |
+
def get_input_embeddings(self):
|
1426 |
+
return self.model.embed_tokens
|
1427 |
+
|
1428 |
+
def set_input_embeddings(self, value):
|
1429 |
+
self.model.embed_tokens = value
|
1430 |
+
|
1431 |
+
@add_start_docstrings_to_model_forward(PHI3_INPUTS_DOCSTRING)
|
1432 |
+
def forward(
|
1433 |
+
self,
|
1434 |
+
input_ids: torch.LongTensor = None,
|
1435 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1436 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1437 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1438 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1439 |
+
labels: Optional[torch.LongTensor] = None,
|
1440 |
+
use_cache: Optional[bool] = None,
|
1441 |
+
output_attentions: Optional[bool] = None,
|
1442 |
+
output_hidden_states: Optional[bool] = None,
|
1443 |
+
return_dict: Optional[bool] = None,
|
1444 |
+
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
1445 |
+
r"""
|
1446 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1447 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1448 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1449 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1450 |
+
"""
|
1451 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1452 |
+
|
1453 |
+
model_outputs = self.model(
|
1454 |
+
input_ids,
|
1455 |
+
attention_mask=attention_mask,
|
1456 |
+
position_ids=position_ids,
|
1457 |
+
past_key_values=past_key_values,
|
1458 |
+
inputs_embeds=inputs_embeds,
|
1459 |
+
use_cache=use_cache,
|
1460 |
+
output_attentions=output_attentions,
|
1461 |
+
output_hidden_states=output_hidden_states,
|
1462 |
+
return_dict=return_dict,
|
1463 |
+
)
|
1464 |
+
hidden_states = model_outputs[0]
|
1465 |
+
logits = self.score(hidden_states)
|
1466 |
+
|
1467 |
+
if input_ids is not None:
|
1468 |
+
batch_size = input_ids.shape[0]
|
1469 |
+
else:
|
1470 |
+
batch_size = inputs_embeds.shape[0]
|
1471 |
+
|
1472 |
+
if self.config.pad_token_id is None and batch_size != 1:
|
1473 |
+
raise ValueError('Cannot handle batch sizes > 1 if no padding token is defined.')
|
1474 |
+
if self.config.pad_token_id is None:
|
1475 |
+
sequence_lengths = -1
|
1476 |
+
else:
|
1477 |
+
if input_ids is not None:
|
1478 |
+
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
|
1479 |
+
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
|
1480 |
+
sequence_lengths = sequence_lengths % input_ids.shape[-1]
|
1481 |
+
sequence_lengths = sequence_lengths.to(logits.device)
|
1482 |
+
else:
|
1483 |
+
sequence_lengths = -1
|
1484 |
+
|
1485 |
+
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
1486 |
+
|
1487 |
+
loss = None
|
1488 |
+
if labels is not None:
|
1489 |
+
labels = labels.to(logits.device)
|
1490 |
+
if self.config.problem_type is None:
|
1491 |
+
if self.num_labels == 1:
|
1492 |
+
self.config.problem_type = 'regression'
|
1493 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
1494 |
+
self.config.problem_type = 'single_label_classification'
|
1495 |
+
else:
|
1496 |
+
self.config.problem_type = 'multi_label_classification'
|
1497 |
+
|
1498 |
+
if self.config.problem_type == 'regression':
|
1499 |
+
loss_fct = MSELoss()
|
1500 |
+
if self.num_labels == 1:
|
1501 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
1502 |
+
else:
|
1503 |
+
loss = loss_fct(pooled_logits, labels)
|
1504 |
+
elif self.config.problem_type == 'single_label_classification':
|
1505 |
+
loss_fct = CrossEntropyLoss()
|
1506 |
+
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
1507 |
+
elif self.config.problem_type == 'multi_label_classification':
|
1508 |
+
loss_fct = BCEWithLogitsLoss()
|
1509 |
+
loss = loss_fct(pooled_logits, labels)
|
1510 |
+
if not return_dict:
|
1511 |
+
output = (pooled_logits,) + model_outputs[1:]
|
1512 |
+
return ((loss,) + output) if loss is not None else output
|
1513 |
+
|
1514 |
+
return SequenceClassifierOutputWithPast(
|
1515 |
+
loss=loss,
|
1516 |
+
logits=pooled_logits,
|
1517 |
+
past_key_values=model_outputs.past_key_values,
|
1518 |
+
hidden_states=model_outputs.hidden_states,
|
1519 |
+
attentions=model_outputs.attentions,
|
1520 |
+
)
|
1521 |
+
|
1522 |
+
|
1523 |
+
@add_start_docstrings(
|
1524 |
+
"""
|
1525 |
+
[`Phi3Model`] with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
|
1526 |
+
Named-Entity-Recognition (NER) tasks.
|
1527 |
+
""",
|
1528 |
+
PHI3_START_DOCSTRING,
|
1529 |
+
)
|
1530 |
+
# Copied from transformers.models.mpt.modeling_mpt.MptForTokenClassification with Mpt->Phi3,MPT->PHI3,self.transformer->self.model,transformer_outputs->model_outputs
|
1531 |
+
class Phi3ForTokenClassification(Phi3PreTrainedModel):
|
1532 |
+
def __init__(self, config: Phi3Config):
|
1533 |
+
super().__init__(config)
|
1534 |
+
self.num_labels = config.num_labels
|
1535 |
+
|
1536 |
+
self.model = Phi3Model(config)
|
1537 |
+
if hasattr(config, 'classifier_dropout') and config.classifier_dropout is not None:
|
1538 |
+
classifier_dropout = config.classifier_dropout
|
1539 |
+
elif hasattr(config, 'hidden_dropout') and config.hidden_dropout is not None:
|
1540 |
+
classifier_dropout = config.hidden_dropout
|
1541 |
+
else:
|
1542 |
+
classifier_dropout = 0.1
|
1543 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
1544 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
1545 |
+
|
1546 |
+
# Initialize weights and apply final processing
|
1547 |
+
self.post_init()
|
1548 |
+
|
1549 |
+
@add_start_docstrings_to_model_forward(PHI3_INPUTS_DOCSTRING)
|
1550 |
+
@add_code_sample_docstrings(
|
1551 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1552 |
+
output_type=TokenClassifierOutput,
|
1553 |
+
config_class=_CONFIG_FOR_DOC,
|
1554 |
+
)
|
1555 |
+
def forward(
|
1556 |
+
self,
|
1557 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1558 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
|
1559 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1560 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1561 |
+
labels: Optional[torch.Tensor] = None,
|
1562 |
+
use_cache: Optional[bool] = None,
|
1563 |
+
output_attentions: Optional[bool] = None,
|
1564 |
+
output_hidden_states: Optional[bool] = None,
|
1565 |
+
return_dict: Optional[bool] = None,
|
1566 |
+
**deprecated_arguments,
|
1567 |
+
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
|
1568 |
+
r"""
|
1569 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1570 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1571 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1572 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1573 |
+
"""
|
1574 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1575 |
+
|
1576 |
+
model_outputs = self.model(
|
1577 |
+
input_ids,
|
1578 |
+
past_key_values=past_key_values,
|
1579 |
+
attention_mask=attention_mask,
|
1580 |
+
inputs_embeds=inputs_embeds,
|
1581 |
+
use_cache=use_cache,
|
1582 |
+
output_attentions=output_attentions,
|
1583 |
+
output_hidden_states=output_hidden_states,
|
1584 |
+
return_dict=return_dict,
|
1585 |
+
)
|
1586 |
+
|
1587 |
+
hidden_states = model_outputs[0]
|
1588 |
+
hidden_states = self.dropout(hidden_states)
|
1589 |
+
logits = self.classifier(hidden_states)
|
1590 |
+
|
1591 |
+
loss = None
|
1592 |
+
if labels is not None:
|
1593 |
+
# move labels to correct device to enable model parallelism
|
1594 |
+
labels = labels.to(logits.device)
|
1595 |
+
batch_size, seq_length = labels.shape
|
1596 |
+
loss_fct = CrossEntropyLoss()
|
1597 |
+
loss = loss_fct(
|
1598 |
+
logits.view(batch_size * seq_length, self.num_labels), labels.view(batch_size * seq_length)
|
1599 |
+
)
|
1600 |
+
|
1601 |
+
if not return_dict:
|
1602 |
+
output = (logits,) + model_outputs[2:]
|
1603 |
+
return ((loss,) + output) if loss is not None else output
|
1604 |
+
|
1605 |
+
return TokenClassifierOutput(
|
1606 |
+
loss=loss,
|
1607 |
+
logits=logits,
|
1608 |
+
hidden_states=model_outputs.hidden_states,
|
1609 |
+
attentions=model_outputs.attentions,
|
1610 |
+
)
|
modeling_sa2va_chat.py
ADDED
@@ -0,0 +1,866 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# --------------------------------------------------------
|
2 |
+
# InternVL
|
3 |
+
# Copyright (c) 2024 OpenGVLab
|
4 |
+
# Licensed under The MIT License [see LICENSE for details]
|
5 |
+
# --------------------------------------------------------
|
6 |
+
|
7 |
+
import warnings
|
8 |
+
from typing import Any, List, Optional, Tuple, Union
|
9 |
+
|
10 |
+
import torchvision.transforms as T
|
11 |
+
from torchvision.transforms.functional import InterpolationMode
|
12 |
+
|
13 |
+
import torch.utils.checkpoint
|
14 |
+
import transformers
|
15 |
+
|
16 |
+
from .modeling_internlm2 import InternLM2ForCausalLM
|
17 |
+
from .modeling_phi3 import Phi3ForCausalLM
|
18 |
+
from peft import LoraConfig, get_peft_model
|
19 |
+
from torch import nn
|
20 |
+
from torch.nn import CrossEntropyLoss
|
21 |
+
from transformers import (AutoModel, GenerationConfig, LlamaForCausalLM,
|
22 |
+
LlamaTokenizer, Qwen2ForCausalLM)
|
23 |
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
24 |
+
from transformers.modeling_utils import PreTrainedModel
|
25 |
+
from transformers.utils import ModelOutput, logging
|
26 |
+
from transformers import StoppingCriteriaList, StoppingCriteria
|
27 |
+
|
28 |
+
from .configuration_sa2va_chat import Sa2VAChatConfig
|
29 |
+
from .modeling_intern_vit import InternVisionModel, has_flash_attn
|
30 |
+
|
31 |
+
from .sam2 import SAM2
|
32 |
+
from .templates import PROMPT_TEMPLATE
|
33 |
+
|
34 |
+
import numpy as np
|
35 |
+
from torchvision.transforms.functional import resize, to_pil_image
|
36 |
+
|
37 |
+
from types import MethodType
|
38 |
+
import torch.nn.functional as F
|
39 |
+
|
40 |
+
try:
|
41 |
+
from .flash_attention import FlashAttention
|
42 |
+
has_flash_attn = True
|
43 |
+
except:
|
44 |
+
print('FlashAttention is not installed.')
|
45 |
+
has_flash_attn = False
|
46 |
+
|
47 |
+
logger = logging.get_logger(__name__)
|
48 |
+
|
49 |
+
def version_cmp(v1, v2, op='eq'):
|
50 |
+
import operator
|
51 |
+
|
52 |
+
from packaging import version
|
53 |
+
op_func = getattr(operator, op)
|
54 |
+
return op_func(version.parse(v1), version.parse(v2))
|
55 |
+
|
56 |
+
class StopWordStoppingCriteria(StoppingCriteria):
|
57 |
+
"""StopWord stopping criteria."""
|
58 |
+
|
59 |
+
def __init__(self, tokenizer, stop_word):
|
60 |
+
self.tokenizer = tokenizer
|
61 |
+
self.stop_word = stop_word
|
62 |
+
self.length = len(self.stop_word)
|
63 |
+
|
64 |
+
def __call__(self, input_ids, *args, **kwargs) -> bool:
|
65 |
+
cur_text = self.tokenizer.decode(input_ids[0])
|
66 |
+
cur_text = cur_text.replace('\r', '').replace('\n', '')
|
67 |
+
return cur_text[-self.length:] == self.stop_word
|
68 |
+
|
69 |
+
def get_stop_criteria(
|
70 |
+
tokenizer,
|
71 |
+
stop_words=[],
|
72 |
+
):
|
73 |
+
stop_criteria = StoppingCriteriaList()
|
74 |
+
for word in stop_words:
|
75 |
+
stop_criteria.append(StopWordStoppingCriteria(tokenizer, word))
|
76 |
+
return stop_criteria
|
77 |
+
|
78 |
+
class DirectResize:
|
79 |
+
def __init__(self, target_length: int) -> None:
|
80 |
+
self.target_length = target_length
|
81 |
+
|
82 |
+
def apply_image(self, image: np.ndarray) -> np.ndarray:
|
83 |
+
"""
|
84 |
+
Expects a numpy array with shape HxWxC in uint8 format.
|
85 |
+
"""
|
86 |
+
img = to_pil_image(image, mode='RGB')
|
87 |
+
return np.array(img.resize((self.target_length, self.target_length)))
|
88 |
+
|
89 |
+
class Sa2VAChatModel(PreTrainedModel):
|
90 |
+
config_class = Sa2VAChatConfig
|
91 |
+
main_input_name = 'pixel_values'
|
92 |
+
base_model_prefix = 'language_model'
|
93 |
+
_no_split_modules = ['InternVisionModel', 'LlamaDecoderLayer', 'InternLM2DecoderLayer',
|
94 |
+
'Phi3DecoderLayer', 'Qwen2DecoderLayer', 'SAM2']
|
95 |
+
_supports_flash_attn_2 = True
|
96 |
+
supports_gradient_checkpointing = True
|
97 |
+
|
98 |
+
def __init__(self, config: Sa2VAChatConfig, vision_model=None, language_model=None, use_flash_attn=True):
|
99 |
+
super().__init__(config)
|
100 |
+
|
101 |
+
assert version_cmp(transformers.__version__, '4.37.0', 'ge')
|
102 |
+
image_size = config.force_image_size or config.vision_config.image_size
|
103 |
+
patch_size = config.vision_config.patch_size
|
104 |
+
self.patch_size = patch_size
|
105 |
+
self.select_layer = config.select_layer
|
106 |
+
self.template = config.template
|
107 |
+
self.template = self.template.replace('-', '_')
|
108 |
+
self.num_image_token = int((image_size // patch_size) ** 2 * (config.downsample_ratio ** 2))
|
109 |
+
self.downsample_ratio = config.downsample_ratio
|
110 |
+
self.ps_version = config.ps_version
|
111 |
+
self.llm_arch_name = config.llm_config.architectures[0]
|
112 |
+
|
113 |
+
use_flash_attn = use_flash_attn if has_flash_attn else False
|
114 |
+
config.vision_config.use_flash_attn = True if use_flash_attn else False
|
115 |
+
config.llm_config._attn_implementation = 'flash_attention_2' if use_flash_attn else 'eager'
|
116 |
+
|
117 |
+
logger.info(f'num_image_token: {self.num_image_token}')
|
118 |
+
logger.info(f'ps_version: {self.ps_version}')
|
119 |
+
if vision_model is not None:
|
120 |
+
self.vision_model = vision_model
|
121 |
+
else:
|
122 |
+
self.vision_model = InternVisionModel(config.vision_config)
|
123 |
+
if language_model is not None:
|
124 |
+
self.language_model = language_model
|
125 |
+
else:
|
126 |
+
if config.llm_config.architectures[0] == 'LlamaForCausalLM':
|
127 |
+
self.language_model = LlamaForCausalLM(config.llm_config)
|
128 |
+
elif config.llm_config.architectures[0] == 'InternLM2ForCausalLM':
|
129 |
+
self.language_model = InternLM2ForCausalLM(config.llm_config)
|
130 |
+
elif config.llm_config.architectures[0] == 'Phi3ForCausalLM':
|
131 |
+
self.language_model = Phi3ForCausalLM(config.llm_config)
|
132 |
+
elif config.llm_config.architectures[0] == 'Qwen2ForCausalLM':
|
133 |
+
self.language_model = Qwen2ForCausalLM(config.llm_config)
|
134 |
+
else:
|
135 |
+
raise NotImplementedError(f'{config.llm_config.architectures[0]} is not implemented.')
|
136 |
+
|
137 |
+
vit_hidden_size = config.vision_config.hidden_size
|
138 |
+
llm_hidden_size = config.llm_config.hidden_size
|
139 |
+
|
140 |
+
self.mlp1 = nn.Sequential(
|
141 |
+
nn.LayerNorm(vit_hidden_size * int(1 / self.downsample_ratio) ** 2),
|
142 |
+
nn.Linear(vit_hidden_size * int(1 / self.downsample_ratio) ** 2, llm_hidden_size),
|
143 |
+
nn.GELU(),
|
144 |
+
nn.Linear(llm_hidden_size, llm_hidden_size)
|
145 |
+
)
|
146 |
+
|
147 |
+
self.img_context_token_id = None
|
148 |
+
self.conv_template = PROMPT_TEMPLATE[self.template]
|
149 |
+
self.template = self.conv_template
|
150 |
+
if hasattr(config, 'system_message'):
|
151 |
+
self.system_message = config.system_message
|
152 |
+
self.num_samples = 0
|
153 |
+
|
154 |
+
if config.use_backbone_lora:
|
155 |
+
self.wrap_backbone_lora(r=config.use_backbone_lora, lora_alpha=2 * config.use_backbone_lora)
|
156 |
+
|
157 |
+
if config.use_llm_lora:
|
158 |
+
self.wrap_llm_lora(r=config.use_llm_lora, lora_alpha=2 * config.use_llm_lora)
|
159 |
+
|
160 |
+
self.grounding_encoder = SAM2()
|
161 |
+
out_dim = self.grounding_encoder.hidden_dim
|
162 |
+
in_dim = llm_hidden_size
|
163 |
+
self.text_hidden_fcs = nn.Sequential(
|
164 |
+
nn.Linear(in_dim, in_dim), nn.ReLU(inplace=True),
|
165 |
+
nn.Linear(in_dim, out_dim), nn.Dropout(0.0)
|
166 |
+
)
|
167 |
+
|
168 |
+
self.init_prediction_config = False
|
169 |
+
|
170 |
+
def wrap_backbone_lora(self, r=128, lora_alpha=256, lora_dropout=0.05):
|
171 |
+
lora_config = LoraConfig(
|
172 |
+
r=r,
|
173 |
+
target_modules=['attn.qkv', 'attn.proj', 'mlp.fc1', 'mlp.fc2'],
|
174 |
+
lora_alpha=lora_alpha,
|
175 |
+
lora_dropout=lora_dropout,
|
176 |
+
)
|
177 |
+
self.vision_model = get_peft_model(self.vision_model, lora_config)
|
178 |
+
self.vision_model.print_trainable_parameters()
|
179 |
+
|
180 |
+
def wrap_llm_lora(self, r=128, lora_alpha=256, lora_dropout=0.05):
|
181 |
+
# Determine the target modules based on the architecture of the language model
|
182 |
+
if self.llm_arch_name == 'InternLM2ForCausalLM':
|
183 |
+
target_modules = ['attention.wqkv', 'attention.wo', 'feed_forward.w1', 'feed_forward.w2', 'feed_forward.w3']
|
184 |
+
elif self.llm_arch_name == 'Phi3ForCausalLM':
|
185 |
+
target_modules = ['mlp.down_proj', 'mlp.gate_up_proj', 'self_attn.o_proj', 'self_attn.qkv_proj']
|
186 |
+
elif self.llm_arch_name in ['Qwen2ForCausalLM', 'LlamaForCausalLM']:
|
187 |
+
target_modules = ['self_attn.q_proj', 'self_attn.k_proj', 'self_attn.v_proj', 'self_attn.o_proj',
|
188 |
+
'mlp.gate_proj', 'mlp.down_proj', 'mlp.up_proj']
|
189 |
+
else:
|
190 |
+
raise NotImplemented
|
191 |
+
lora_config = LoraConfig(
|
192 |
+
r=r,
|
193 |
+
target_modules=target_modules,
|
194 |
+
lora_alpha=lora_alpha,
|
195 |
+
lora_dropout=lora_dropout,
|
196 |
+
task_type='CAUSAL_LM'
|
197 |
+
)
|
198 |
+
self.language_model = get_peft_model(self.language_model, lora_config)
|
199 |
+
self.language_model.enable_input_require_grads()
|
200 |
+
self.language_model.print_trainable_parameters()
|
201 |
+
|
202 |
+
def pixel_shuffle(self, x, scale_factor=0.5):
|
203 |
+
n, w, h, c = x.size()
|
204 |
+
# N, W, H, C --> N, W, H * scale, C // scale
|
205 |
+
x = x.view(n, w, int(h * scale_factor), int(c / scale_factor))
|
206 |
+
# N, W, H * scale, C // scale --> N, H * scale, W, C // scale
|
207 |
+
x = x.permute(0, 2, 1, 3).contiguous()
|
208 |
+
# N, H * scale, W, C // scale --> N, H * scale, W * scale, C // (scale ** 2)
|
209 |
+
x = x.view(n, int(h * scale_factor), int(w * scale_factor),
|
210 |
+
int(c / (scale_factor * scale_factor)))
|
211 |
+
if self.ps_version == 'v1':
|
212 |
+
warnings.warn("In ps_version 'v1', the height and width have not been swapped back, "
|
213 |
+
'which results in a transposed image.')
|
214 |
+
else:
|
215 |
+
x = x.permute(0, 2, 1, 3).contiguous()
|
216 |
+
return x
|
217 |
+
|
218 |
+
def extract_feature(self, pixel_values):
|
219 |
+
if self.select_layer == -1:
|
220 |
+
vit_embeds = self.vision_model(
|
221 |
+
pixel_values=pixel_values,
|
222 |
+
output_hidden_states=False,
|
223 |
+
return_dict=True).last_hidden_state
|
224 |
+
else:
|
225 |
+
vit_embeds = self.vision_model(
|
226 |
+
pixel_values=pixel_values,
|
227 |
+
output_hidden_states=True,
|
228 |
+
return_dict=True).hidden_states[self.select_layer]
|
229 |
+
vit_embeds = vit_embeds[:, 1:, :]
|
230 |
+
|
231 |
+
h = w = int(vit_embeds.shape[1] ** 0.5)
|
232 |
+
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1)
|
233 |
+
vit_embeds = self.pixel_shuffle(vit_embeds, scale_factor=self.downsample_ratio)
|
234 |
+
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1])
|
235 |
+
vit_embeds = self.mlp1(vit_embeds)
|
236 |
+
return vit_embeds
|
237 |
+
|
238 |
+
@property
|
239 |
+
def lm_head(self):
|
240 |
+
return self.language_model.get_output_embeddings()
|
241 |
+
|
242 |
+
def get_input_embeddings(self):
|
243 |
+
return self.language_model.get_input_embeddings()
|
244 |
+
|
245 |
+
def get_output_embeddings(self):
|
246 |
+
return self.language_model.get_output_embeddings()
|
247 |
+
|
248 |
+
def forward(self, data, data_samples=None, mode='loss'):
|
249 |
+
pixel_values = data['pixel_values']
|
250 |
+
|
251 |
+
if type(pixel_values) is list or pixel_values.ndim == 5:
|
252 |
+
if type(pixel_values) is list:
|
253 |
+
pixel_values = [
|
254 |
+
x.unsqueeze(0) if x.ndim == 3 else x for x in pixel_values
|
255 |
+
]
|
256 |
+
# b*n, c, h, w
|
257 |
+
concat_images = torch.cat(
|
258 |
+
[image.to(self.vision_model.dtype) for image in pixel_values], dim=0)
|
259 |
+
else:
|
260 |
+
raise NotImplementedError()
|
261 |
+
|
262 |
+
input_ids = data['input_ids']
|
263 |
+
position_ids = data['position_ids']
|
264 |
+
attention_mask = data['attention_mask']
|
265 |
+
# sum is 0 are text
|
266 |
+
image_flags = torch.sum(concat_images, dim=(1, 2, 3)) != 0
|
267 |
+
image_flags = image_flags.long()
|
268 |
+
|
269 |
+
labels = data['labels']
|
270 |
+
use_cache = False
|
271 |
+
|
272 |
+
if 'vp_overall_mask' not in data.keys():
|
273 |
+
vp_overall_mask = None
|
274 |
+
else:
|
275 |
+
vp_overall_mask = data['vp_overall_mask']
|
276 |
+
|
277 |
+
if 'prompt_masks' in data.keys():
|
278 |
+
prompt_masks = data['prompt_masks']
|
279 |
+
else:
|
280 |
+
prompt_masks = None
|
281 |
+
|
282 |
+
outputs = self._llm_forward(
|
283 |
+
input_ids=input_ids,
|
284 |
+
position_ids=position_ids,
|
285 |
+
attention_mask=attention_mask,
|
286 |
+
image_flags=image_flags,
|
287 |
+
pixel_values=concat_images,
|
288 |
+
labels=labels,
|
289 |
+
use_cache=use_cache,
|
290 |
+
output_hidden_states=True,
|
291 |
+
vp_overall_mask=vp_overall_mask,
|
292 |
+
prompt_masks=prompt_masks,
|
293 |
+
)
|
294 |
+
|
295 |
+
return outputs
|
296 |
+
|
297 |
+
def _llm_forward(
|
298 |
+
self,
|
299 |
+
pixel_values: torch.FloatTensor,
|
300 |
+
input_ids: torch.LongTensor = None,
|
301 |
+
attention_mask: Optional[torch.Tensor] = None,
|
302 |
+
position_ids: Optional[torch.LongTensor] = None,
|
303 |
+
image_flags: Optional[torch.LongTensor] = None,
|
304 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
305 |
+
labels: Optional[torch.LongTensor] = None,
|
306 |
+
use_cache: Optional[bool] = None,
|
307 |
+
output_attentions: Optional[bool] = None,
|
308 |
+
output_hidden_states: Optional[bool] = None,
|
309 |
+
return_dict: Optional[bool] = None,
|
310 |
+
vp_overall_mask=None,
|
311 |
+
prompt_masks=None,
|
312 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
313 |
+
return_dict = return_dict if return_dict is not None \
|
314 |
+
else self.config.use_return_dict
|
315 |
+
|
316 |
+
image_flags = image_flags.squeeze(-1)
|
317 |
+
# We only added the clone code here to avoid the error.
|
318 |
+
input_embeds = self.language_model.get_input_embeddings()(
|
319 |
+
input_ids).clone()
|
320 |
+
|
321 |
+
vit_embeds = self.extract_feature(pixel_values)
|
322 |
+
vit_embeds = vit_embeds.to(input_embeds.dtype) # FIXME: why vit_embeds is float16?
|
323 |
+
fast_vit_embeds = None
|
324 |
+
|
325 |
+
vit_embeds = vit_embeds[image_flags == 1]
|
326 |
+
vit_batch_size = pixel_values.shape[0]
|
327 |
+
|
328 |
+
B, N, C = input_embeds.shape
|
329 |
+
input_embeds = input_embeds.reshape(B * N, C)
|
330 |
+
|
331 |
+
self._count += 1
|
332 |
+
|
333 |
+
if vp_overall_mask is not None and prompt_masks is not None:
|
334 |
+
vp_embeds = []
|
335 |
+
vp_overall_mask = vp_overall_mask.to(vit_embeds.device).bool()
|
336 |
+
prompt_masks = [item.to(vit_embeds.device).bool() for item in prompt_masks]
|
337 |
+
|
338 |
+
vp_overall_mask = vp_overall_mask[image_flags == 1]
|
339 |
+
overall_tile_vit_embeds = vit_embeds[vp_overall_mask] # (n_img, hw, c)
|
340 |
+
|
341 |
+
i_vp_img = 0
|
342 |
+
for i_img in range(len(vit_embeds)):
|
343 |
+
vp_embeds.append(vit_embeds[i_img].reshape(-1, C))
|
344 |
+
if vp_overall_mask[i_img]:
|
345 |
+
tile_vit_embeds = overall_tile_vit_embeds[i_vp_img].reshape(-1, C) # (hw, C)
|
346 |
+
objects_prompt_masks = prompt_masks[i_vp_img]
|
347 |
+
n_obj = len(objects_prompt_masks)
|
348 |
+
tile_vit_embeds = tile_vit_embeds.unsqueeze(0).repeat(n_obj, 1, 1)
|
349 |
+
objects_prompt_masks = objects_prompt_masks.reshape(n_obj, -1)
|
350 |
+
vp_embeds.append(tile_vit_embeds[objects_prompt_masks])
|
351 |
+
i_vp_img += 1
|
352 |
+
vp_embeds = torch.cat(vp_embeds, dim=0)
|
353 |
+
else:
|
354 |
+
vp_embeds = None
|
355 |
+
|
356 |
+
input_ids = input_ids.reshape(B * N)
|
357 |
+
selected = (input_ids == self.img_context_token_id)
|
358 |
+
|
359 |
+
if vp_embeds is None:
|
360 |
+
try:
|
361 |
+
input_embeds[selected] = vit_embeds.reshape(-1, C)
|
362 |
+
except Exception as e:
|
363 |
+
vit_embeds = vit_embeds.reshape(-1, C)
|
364 |
+
print(f'warning: {e}, input_embeds[selected].shape='
|
365 |
+
f'{input_embeds[selected].shape}, '
|
366 |
+
f'vit_embeds.shape={vit_embeds.shape}')
|
367 |
+
n_token = selected.sum()
|
368 |
+
if n_token > len(vit_embeds):
|
369 |
+
print(f"Wrong !!! {n_token} image tokens in text but only {len(vit_embeds)} vit embeds !!!")
|
370 |
+
expand_ratio = n_token // len(vit_embeds) + 1
|
371 |
+
vit_embeds = torch.cat([vit_embeds] * expand_ratio, dim=0)
|
372 |
+
|
373 |
+
input_embeds[selected] = vit_embeds[:n_token]
|
374 |
+
else:
|
375 |
+
try:
|
376 |
+
input_embeds[selected] = vp_embeds.reshape(-1, C)
|
377 |
+
except Exception as e:
|
378 |
+
vp_embeds = vp_embeds.reshape(-1, C)
|
379 |
+
print(f'warning: {e}, input_embeds[selected].shape='
|
380 |
+
f'{input_embeds[selected].shape}, '
|
381 |
+
f'vp_embeds.shape={vp_embeds.shape}')
|
382 |
+
n_token = selected.sum()
|
383 |
+
if n_token > len(vp_embeds):
|
384 |
+
print(f"Wrong !!! {n_token} image tokens in text but only {len(vp_embeds)} vit embeds !!!")
|
385 |
+
expand_ratio = n_token // len(vp_embeds) + 1
|
386 |
+
vp_embeds = torch.cat([vp_embeds] * expand_ratio, dim=0)
|
387 |
+
|
388 |
+
input_embeds[selected] = vp_embeds[:n_token]
|
389 |
+
|
390 |
+
input_embeds = input_embeds.reshape(B, N, C)
|
391 |
+
|
392 |
+
outputs = self.language_model(
|
393 |
+
inputs_embeds=input_embeds,
|
394 |
+
attention_mask=attention_mask,
|
395 |
+
position_ids=position_ids,
|
396 |
+
past_key_values=past_key_values,
|
397 |
+
use_cache=use_cache,
|
398 |
+
output_attentions=output_attentions,
|
399 |
+
output_hidden_states=output_hidden_states,
|
400 |
+
return_dict=return_dict,
|
401 |
+
)
|
402 |
+
logits = outputs.logits
|
403 |
+
|
404 |
+
loss = None
|
405 |
+
if labels is not None:
|
406 |
+
# Shift so that tokens < n predict n
|
407 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
408 |
+
shift_labels = labels[..., 1:].contiguous()
|
409 |
+
# Flatten the tokens
|
410 |
+
loss_fct = CrossEntropyLoss()
|
411 |
+
shift_logits = shift_logits.view(
|
412 |
+
-1, self.language_model.config.vocab_size)
|
413 |
+
shift_labels = shift_labels.view(-1)
|
414 |
+
# Enable model parallelism
|
415 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
416 |
+
loss = loss_fct(shift_logits, shift_labels)
|
417 |
+
|
418 |
+
if not return_dict:
|
419 |
+
output = (logits,) + outputs[1:]
|
420 |
+
return (loss,) + output if loss is not None else output
|
421 |
+
|
422 |
+
return CausalLMOutputWithPast(
|
423 |
+
loss=loss,
|
424 |
+
logits=logits,
|
425 |
+
past_key_values=outputs.past_key_values,
|
426 |
+
hidden_states=outputs.hidden_states,
|
427 |
+
attentions=outputs.attentions,
|
428 |
+
)
|
429 |
+
|
430 |
+
@torch.no_grad()
|
431 |
+
def generate(
|
432 |
+
self,
|
433 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
434 |
+
input_ids: Optional[torch.FloatTensor] = None,
|
435 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
436 |
+
visual_features: Optional[torch.FloatTensor] = None,
|
437 |
+
generation_config: Optional[GenerationConfig] = None,
|
438 |
+
output_hidden_states: Optional[bool] = None,
|
439 |
+
return_dict: Optional[bool] = None,
|
440 |
+
prompt_masks=None,
|
441 |
+
vp_overall_mask=None,
|
442 |
+
**generate_kwargs,
|
443 |
+
) -> torch.LongTensor:
|
444 |
+
device = self.device
|
445 |
+
assert self.img_context_token_id is not None
|
446 |
+
|
447 |
+
if pixel_values is not None:
|
448 |
+
if visual_features is not None:
|
449 |
+
vit_embeds = visual_features
|
450 |
+
else:
|
451 |
+
if type(pixel_values) is list or pixel_values.ndim == 5:
|
452 |
+
if type(pixel_values) is list:
|
453 |
+
pixel_values = [
|
454 |
+
x.unsqueeze(0) if x.ndim == 3 else x for x in pixel_values
|
455 |
+
]
|
456 |
+
# b*n, c, h, w
|
457 |
+
pixel_values = torch.cat(
|
458 |
+
[image.to(self.vision_model.dtype) for image in pixel_values], dim=0)
|
459 |
+
|
460 |
+
vit_embeds = self.extract_feature(pixel_values.to(device))
|
461 |
+
image_flags = torch.sum(pixel_values, dim=(1, 2, 3)) != 0
|
462 |
+
image_flags = image_flags.long()
|
463 |
+
vit_embeds = vit_embeds[image_flags == 1]
|
464 |
+
|
465 |
+
input_embeds = self.language_model.get_input_embeddings()(input_ids.to(device))
|
466 |
+
B, N, C = input_embeds.shape
|
467 |
+
input_embeds = input_embeds.reshape(B * N, C)
|
468 |
+
|
469 |
+
if vp_overall_mask is not None and prompt_masks is not None:
|
470 |
+
vp_embeds = []
|
471 |
+
vp_overall_mask = vp_overall_mask.to(vit_embeds.device).bool()
|
472 |
+
prompt_masks = [item.to(vit_embeds.device).bool() for item in prompt_masks]
|
473 |
+
|
474 |
+
vp_overall_mask = vp_overall_mask[image_flags == 1]
|
475 |
+
overall_tile_vit_embeds = vit_embeds[vp_overall_mask] # (n_img, hw, c)
|
476 |
+
|
477 |
+
i_vp_img = 0
|
478 |
+
for i_img in range(len(vit_embeds)):
|
479 |
+
vp_embeds.append(vit_embeds[i_img].reshape(-1, C))
|
480 |
+
if vp_overall_mask[i_img]:
|
481 |
+
tile_vit_embeds = overall_tile_vit_embeds[i_vp_img].reshape(-1, C) # (hw, C)
|
482 |
+
objects_prompt_masks = prompt_masks[i_vp_img]
|
483 |
+
n_obj = len(objects_prompt_masks)
|
484 |
+
tile_vit_embeds = tile_vit_embeds.unsqueeze(0).repeat(n_obj, 1, 1)
|
485 |
+
objects_prompt_masks = objects_prompt_masks.reshape(n_obj, -1)
|
486 |
+
vp_embeds.append(tile_vit_embeds[objects_prompt_masks])
|
487 |
+
i_vp_img += 1
|
488 |
+
|
489 |
+
vp_embeds = torch.cat(vp_embeds, dim=0)
|
490 |
+
else:
|
491 |
+
vp_embeds = None
|
492 |
+
|
493 |
+
input_ids = input_ids.reshape(B * N)
|
494 |
+
selected = (input_ids == self.img_context_token_id)
|
495 |
+
assert selected.sum() != 0
|
496 |
+
if vp_embeds is None:
|
497 |
+
input_embeds[selected] = vit_embeds.reshape(-1, C).to(input_embeds.device)
|
498 |
+
else:
|
499 |
+
if len(input_embeds[selected]) != len(vp_embeds.reshape(-1, C)):
|
500 |
+
print("Shape mismatch, selected is {}, vp embeds is {} !!!" \
|
501 |
+
.format(len(input_embeds[selected]), len(vp_embeds.reshape(-1, C))))
|
502 |
+
min_tokens = min(len(input_embeds[selected]), len(vp_embeds.reshape(-1, C)))
|
503 |
+
input_embeds[selected][:min_tokens] = vp_embeds.reshape(-1, C)[:min_tokens].to(input_embeds.device)
|
504 |
+
else:
|
505 |
+
input_embeds[selected] = vp_embeds.reshape(-1, C).to(input_embeds.device)
|
506 |
+
|
507 |
+
input_embeds = input_embeds.reshape(B, N, C)
|
508 |
+
else:
|
509 |
+
input_embeds = self.language_model.get_input_embeddings()(input_ids)
|
510 |
+
|
511 |
+
outputs = self.language_model.generate(
|
512 |
+
inputs_embeds=input_embeds,
|
513 |
+
attention_mask=attention_mask.to(device),
|
514 |
+
generation_config=generation_config,
|
515 |
+
output_hidden_states=output_hidden_states,
|
516 |
+
return_dict=return_dict,
|
517 |
+
use_cache=True,
|
518 |
+
**generate_kwargs,
|
519 |
+
)
|
520 |
+
|
521 |
+
return outputs
|
522 |
+
|
523 |
+
def preparing_for_generation(self, tokenizer, max_new_tokens=2048, torch_dtype=torch.bfloat16):
|
524 |
+
# set stop criteria and generation configs for model
|
525 |
+
if not hasattr(self, 'tokenizer'):
|
526 |
+
self.tokenizer = tokenizer
|
527 |
+
self.bot_name = 'BOT'
|
528 |
+
stop_words = []
|
529 |
+
stop_words += self.template.get('STOP_WORDS', [])
|
530 |
+
stop_criteria = get_stop_criteria(
|
531 |
+
tokenizer=self.tokenizer, stop_words=stop_words)
|
532 |
+
self.stop_criteria = stop_criteria
|
533 |
+
|
534 |
+
default_generation_kwargs = dict(
|
535 |
+
max_new_tokens=max_new_tokens,
|
536 |
+
do_sample=False,
|
537 |
+
eos_token_id=self.tokenizer.eos_token_id,
|
538 |
+
pad_token_id=(
|
539 |
+
self.tokenizer.pad_token_id
|
540 |
+
if self.tokenizer.pad_token_id is not None
|
541 |
+
else self.tokenizer.eos_token_id
|
542 |
+
),
|
543 |
+
)
|
544 |
+
|
545 |
+
self.gen_config = GenerationConfig(**default_generation_kwargs)
|
546 |
+
self.init_prediction_config = True
|
547 |
+
self.torch_dtype = torch_dtype
|
548 |
+
self.to(torch_dtype)
|
549 |
+
self.extra_image_processor = DirectResize(target_length=1024, )
|
550 |
+
# for multi image process
|
551 |
+
self.min_dynamic_patch = 1
|
552 |
+
self.max_dynamic_patch = 12
|
553 |
+
self.downsample_ratio = 0.5
|
554 |
+
self.image_size = 448
|
555 |
+
self.use_thumbnail = True
|
556 |
+
patch_size = 14
|
557 |
+
self.patch_size = patch_size
|
558 |
+
|
559 |
+
self.patch_token = int((self.image_size // patch_size) ** 2 * (self.downsample_ratio ** 2))
|
560 |
+
self.IMAGENET_MEAN = (0.485, 0.456, 0.406)
|
561 |
+
self.IMAGENET_STD = (0.229, 0.224, 0.225)
|
562 |
+
self.IMG_CONTEXT_TOKEN = '<IMG_CONTEXT>'
|
563 |
+
self.IMG_START_TOKEN = '<img>'
|
564 |
+
self.IMG_END_TOKEN = '</img>'
|
565 |
+
|
566 |
+
self.transformer = T.Compose([
|
567 |
+
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
|
568 |
+
T.Resize((self.image_size, self.image_size), interpolation=InterpolationMode.BICUBIC),
|
569 |
+
T.ToTensor(),
|
570 |
+
T.Normalize(mean=self.IMAGENET_MEAN, std=self.IMAGENET_STD)
|
571 |
+
])
|
572 |
+
self.VP_START_TOKEN = '<vp>'
|
573 |
+
self.VP_END_TOKEN = '</vp>'
|
574 |
+
|
575 |
+
# change phi3 prepare for generation fuction
|
576 |
+
if self.config.llm_config.architectures[0] == 'Phi3ForCausalLM':
|
577 |
+
self.language_model.prepare_inputs_for_generation = MethodType(prepare_inputs_for_generation_phi3, self.language_model)
|
578 |
+
|
579 |
+
img_context_token_id = tokenizer.convert_tokens_to_ids('<IMG_CONTEXT>')
|
580 |
+
self.img_context_token_id = img_context_token_id
|
581 |
+
self.seg_token_idx = tokenizer.convert_tokens_to_ids('[SEG]')
|
582 |
+
return
|
583 |
+
|
584 |
+
def predict_forward(
|
585 |
+
self,
|
586 |
+
image=None,
|
587 |
+
video=None,
|
588 |
+
text=None,
|
589 |
+
past_text='',
|
590 |
+
mask_prompts=None,
|
591 |
+
tokenizer=None,
|
592 |
+
):
|
593 |
+
if not self.init_prediction_config:
|
594 |
+
assert tokenizer
|
595 |
+
self.preparing_for_generation(tokenizer=tokenizer)
|
596 |
+
|
597 |
+
input_dict = {}
|
598 |
+
if video is not None:
|
599 |
+
pixel_values = []
|
600 |
+
extra_pixel_values = []
|
601 |
+
ori_image_size = video[0].size
|
602 |
+
for frame_idx, frame_image in enumerate(video):
|
603 |
+
assert ori_image_size == frame_image.size
|
604 |
+
g_image = np.array(frame_image) # for grounding
|
605 |
+
g_image = self.extra_image_processor.apply_image(g_image)
|
606 |
+
g_image = torch.from_numpy(g_image).permute(2, 0, 1).contiguous()
|
607 |
+
extra_pixel_values.append(g_image)
|
608 |
+
if frame_idx < 5:
|
609 |
+
img = self.transformer(frame_image)
|
610 |
+
pixel_values.append(img)
|
611 |
+
|
612 |
+
pixel_values = torch.stack(pixel_values, dim=0).to(self.torch_dtype) # (n_f, 3, h, w)
|
613 |
+
g_pixel_values = torch.stack([
|
614 |
+
self.grounding_encoder.preprocess_image(pixel) for pixel in extra_pixel_values
|
615 |
+
]).to(self.torch_dtype)
|
616 |
+
num_image_tokens = self.patch_token
|
617 |
+
num_frames = 5
|
618 |
+
|
619 |
+
input_dict['vp_overall_mask'] = None
|
620 |
+
else:
|
621 |
+
ori_image_size = image.size
|
622 |
+
|
623 |
+
# prepare grounding images
|
624 |
+
g_image = np.array(image) # for grounding
|
625 |
+
g_image = self.extra_image_processor.apply_image(g_image)
|
626 |
+
g_pixel_values = torch.from_numpy(g_image).permute(2, 0, 1).contiguous().to(self.torch_dtype)
|
627 |
+
extra_pixel_values = [g_pixel_values]
|
628 |
+
g_pixel_values = torch.stack([
|
629 |
+
self.grounding_encoder.preprocess_image(pixel) for pixel in extra_pixel_values
|
630 |
+
]).to(self.torch_dtype)
|
631 |
+
|
632 |
+
images = dynamic_preprocess(image, self.min_dynamic_patch,
|
633 |
+
self.max_dynamic_patch,
|
634 |
+
self.image_size, self.use_thumbnail)
|
635 |
+
|
636 |
+
if mask_prompts is not None:
|
637 |
+
vp_overall_mask = torch.Tensor([False] * (len(images) - 1) + [True])
|
638 |
+
input_dict['vp_overall_mask'] = vp_overall_mask
|
639 |
+
else:
|
640 |
+
input_dict['vp_overall_mask'] = None
|
641 |
+
|
642 |
+
pixel_values = [self.transformer(image) for image in images]
|
643 |
+
pixel_values = torch.stack(pixel_values).to(self.torch_dtype)
|
644 |
+
num_image_tokens = pixel_values.shape[0] * self.patch_token
|
645 |
+
num_frames = 1
|
646 |
+
input_dict['g_pixel_values'] = g_pixel_values
|
647 |
+
input_dict['pixel_values'] = pixel_values
|
648 |
+
|
649 |
+
|
650 |
+
if mask_prompts is not None:
|
651 |
+
# reshape mask prompts to feature size
|
652 |
+
mask_prompts = [torch.Tensor(item).to(pixel_values.device) for item in mask_prompts]
|
653 |
+
mask_prompts = [F.interpolate(
|
654 |
+
item.unsqueeze(0),
|
655 |
+
size=(int(self.image_size // self.patch_size * self.downsample_ratio),
|
656 |
+
int(self.image_size // self.patch_size * self.downsample_ratio)),
|
657 |
+
mode='nearest').squeeze(0) for item in mask_prompts]
|
658 |
+
region_pixels = []
|
659 |
+
for mask_prompt in mask_prompts[0]:
|
660 |
+
region_pixels.append(mask_prompt.bool().to(torch.int64).sum())
|
661 |
+
|
662 |
+
vp_token_str = '\nThere are {} part regions in the picture: '.format(len(mask_prompts[0]))
|
663 |
+
for i in range(len(mask_prompts[0])):
|
664 |
+
vp_token_str = vp_token_str + \
|
665 |
+
f"region{i + 1}" + self.VP_START_TOKEN + \
|
666 |
+
self.IMG_CONTEXT_TOKEN * region_pixels[i] + \
|
667 |
+
self.VP_END_TOKEN
|
668 |
+
if i == len(mask_prompts[0]) - 1:
|
669 |
+
vp_token_str = vp_token_str + '.\n'
|
670 |
+
else:
|
671 |
+
vp_token_str = vp_token_str + ', '
|
672 |
+
else:
|
673 |
+
vp_token_str = ''
|
674 |
+
|
675 |
+
image_token_str = f'{self.IMG_START_TOKEN}' \
|
676 |
+
f'{self.IMG_CONTEXT_TOKEN * num_image_tokens}' \
|
677 |
+
f'{self.IMG_END_TOKEN}'
|
678 |
+
image_token_str = image_token_str + '\n'
|
679 |
+
image_token_str = image_token_str * num_frames
|
680 |
+
image_token_str = image_token_str.strip()
|
681 |
+
|
682 |
+
ret_masks = []
|
683 |
+
|
684 |
+
if '<image>' in text or mask_prompts is not None:
|
685 |
+
assert past_text is None or len(past_text) == 0
|
686 |
+
text = text.replace('<image>', image_token_str + vp_token_str)
|
687 |
+
input_text = ''
|
688 |
+
input_text += self.template['INSTRUCTION'].format(
|
689 |
+
input=text, round=1, bot_name=self.bot_name)
|
690 |
+
input_text = past_text + input_text
|
691 |
+
ids = self.tokenizer.encode(input_text)
|
692 |
+
ids = torch.tensor(ids).cuda().unsqueeze(0)
|
693 |
+
|
694 |
+
attention_mask = torch.ones_like(ids, dtype=torch.bool)
|
695 |
+
|
696 |
+
mm_inputs = {
|
697 |
+
'pixel_values': input_dict['pixel_values'],
|
698 |
+
'input_ids': ids,
|
699 |
+
'attention_mask': attention_mask,
|
700 |
+
'position_ids': None,
|
701 |
+
'past_key_values': None,
|
702 |
+
'labels': None,
|
703 |
+
'prompt_masks': mask_prompts,
|
704 |
+
'vp_overall_mask': input_dict['vp_overall_mask'],
|
705 |
+
}
|
706 |
+
|
707 |
+
generate_output = self.generate(
|
708 |
+
**mm_inputs,
|
709 |
+
generation_config=self.gen_config,
|
710 |
+
streamer=None,
|
711 |
+
bos_token_id=self.tokenizer.bos_token_id,
|
712 |
+
stopping_criteria=self.stop_criteria,
|
713 |
+
output_hidden_states=True,
|
714 |
+
return_dict_in_generate=True
|
715 |
+
)
|
716 |
+
predict = self.tokenizer.decode(
|
717 |
+
generate_output.sequences[0], skip_special_tokens=False).strip()
|
718 |
+
|
719 |
+
# if have seg result, find the seg hidden states
|
720 |
+
hidden_states = generate_output.hidden_states
|
721 |
+
last_hidden_states = [item[-1][0] for item in hidden_states]
|
722 |
+
last_hidden_states = torch.cat(last_hidden_states, dim=0)
|
723 |
+
seg_hidden_states = get_seg_hidden_states(
|
724 |
+
last_hidden_states, generate_output.sequences[0][:-1],
|
725 |
+
seg_id=self.seg_token_idx
|
726 |
+
)
|
727 |
+
all_seg_hidden_states = self.text_hidden_fcs(seg_hidden_states)
|
728 |
+
|
729 |
+
for seg_hidden_states in all_seg_hidden_states:
|
730 |
+
seg_hidden_states = seg_hidden_states.unsqueeze(0)
|
731 |
+
g_pixel_values = input_dict['g_pixel_values']
|
732 |
+
sam_states = self.grounding_encoder.get_sam2_embeddings(g_pixel_values)
|
733 |
+
pred_masks = self.grounding_encoder.language_embd_inference(sam_states, [seg_hidden_states] * num_frames)
|
734 |
+
w, h = ori_image_size
|
735 |
+
masks = F.interpolate(pred_masks, size=(h, w), mode='bilinear', align_corners=False)
|
736 |
+
masks = masks[:, 0]
|
737 |
+
masks = masks.sigmoid() > 0.5
|
738 |
+
masks = masks.cpu().numpy()
|
739 |
+
ret_masks.append(masks)
|
740 |
+
|
741 |
+
return {'prediction': predict, 'prediction_masks': ret_masks,}
|
742 |
+
|
743 |
+
def get_seg_hidden_states(hidden_states, output_ids, seg_id):
|
744 |
+
seg_mask = output_ids == seg_id
|
745 |
+
n_out = len(seg_mask)
|
746 |
+
if n_out == 0:
|
747 |
+
return hidden_states[0:0]
|
748 |
+
return hidden_states[-n_out:][seg_mask]
|
749 |
+
|
750 |
+
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height,
|
751 |
+
image_size):
|
752 |
+
best_ratio_diff = float('inf')
|
753 |
+
best_ratio = (1, 1)
|
754 |
+
area = width * height
|
755 |
+
for ratio in target_ratios:
|
756 |
+
target_aspect_ratio = ratio[0] / ratio[1]
|
757 |
+
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
|
758 |
+
if ratio_diff < best_ratio_diff:
|
759 |
+
best_ratio_diff = ratio_diff
|
760 |
+
best_ratio = ratio
|
761 |
+
elif ratio_diff == best_ratio_diff:
|
762 |
+
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
|
763 |
+
best_ratio = ratio
|
764 |
+
return best_ratio
|
765 |
+
|
766 |
+
def dynamic_preprocess(image,
|
767 |
+
min_num=1,
|
768 |
+
max_num=6,
|
769 |
+
image_size=448,
|
770 |
+
use_thumbnail=False):
|
771 |
+
orig_width, orig_height = image.size
|
772 |
+
aspect_ratio = orig_width / orig_height
|
773 |
+
|
774 |
+
# calculate the existing image aspect ratio
|
775 |
+
target_ratios = {(i, j)
|
776 |
+
for n in range(min_num, max_num + 1)
|
777 |
+
for i in range(1, n + 1) for j in range(1, n + 1)
|
778 |
+
if i * j <= max_num and i * j >= min_num}
|
779 |
+
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
|
780 |
+
|
781 |
+
# find the closest aspect ratio to the target
|
782 |
+
target_aspect_ratio = find_closest_aspect_ratio(aspect_ratio,
|
783 |
+
target_ratios, orig_width,
|
784 |
+
orig_height, image_size)
|
785 |
+
|
786 |
+
# calculate the target width and height
|
787 |
+
target_width = image_size * target_aspect_ratio[0]
|
788 |
+
target_height = image_size * target_aspect_ratio[1]
|
789 |
+
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
|
790 |
+
|
791 |
+
# resize the image
|
792 |
+
resized_img = image.resize((target_width, target_height))
|
793 |
+
processed_images = []
|
794 |
+
for i in range(blocks):
|
795 |
+
box = ((i % (target_width // image_size)) * image_size,
|
796 |
+
(i // (target_width // image_size)) * image_size,
|
797 |
+
((i % (target_width // image_size)) + 1) * image_size,
|
798 |
+
((i // (target_width // image_size)) + 1) * image_size)
|
799 |
+
# split the image
|
800 |
+
split_img = resized_img.crop(box)
|
801 |
+
processed_images.append(split_img)
|
802 |
+
assert len(processed_images) == blocks
|
803 |
+
if use_thumbnail and len(processed_images) != 1:
|
804 |
+
thumbnail_img = image.resize((image_size, image_size))
|
805 |
+
processed_images.append(thumbnail_img)
|
806 |
+
return processed_images
|
807 |
+
|
808 |
+
|
809 |
+
from transformers.cache_utils import Cache, DynamicCache
|
810 |
+
|
811 |
+
def prepare_inputs_for_generation_phi3(
|
812 |
+
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
813 |
+
):
|
814 |
+
if past_key_values is not None:
|
815 |
+
if isinstance(past_key_values, Cache):
|
816 |
+
cache_length = past_key_values.get_seq_length()
|
817 |
+
past_length = past_key_values.seen_tokens
|
818 |
+
max_cache_length = past_key_values.get_max_length()
|
819 |
+
else:
|
820 |
+
cache_length = past_length = past_key_values[0][0].shape[2]
|
821 |
+
max_cache_length = None
|
822 |
+
|
823 |
+
# Keep only the unprocessed tokens:
|
824 |
+
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
825 |
+
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
|
826 |
+
# input)
|
827 |
+
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
|
828 |
+
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length):]
|
829 |
+
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
|
830 |
+
# input_ids based on the past_length.
|
831 |
+
elif past_length < input_ids.shape[1]:
|
832 |
+
input_ids = input_ids[:, past_length:]
|
833 |
+
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
|
834 |
+
|
835 |
+
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
|
836 |
+
if (
|
837 |
+
max_cache_length is not None
|
838 |
+
and attention_mask is not None
|
839 |
+
and cache_length + input_ids.shape[1] > max_cache_length
|
840 |
+
):
|
841 |
+
attention_mask = attention_mask[:, -max_cache_length:]
|
842 |
+
|
843 |
+
position_ids = kwargs.get('position_ids', None)
|
844 |
+
if attention_mask is not None and position_ids is None:
|
845 |
+
# create position_ids on the fly for batch generation
|
846 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
847 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
848 |
+
if past_key_values:
|
849 |
+
position_ids = position_ids[:, -input_ids.shape[1]:]
|
850 |
+
|
851 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
852 |
+
if inputs_embeds is not None and (past_key_values is None or len(past_key_values)==0):
|
853 |
+
model_inputs = {'inputs_embeds': inputs_embeds}
|
854 |
+
else:
|
855 |
+
model_inputs = {'input_ids': input_ids}
|
856 |
+
|
857 |
+
model_inputs.update(
|
858 |
+
{
|
859 |
+
'position_ids': position_ids,
|
860 |
+
'past_key_values': past_key_values,
|
861 |
+
'use_cache': kwargs.get('use_cache'),
|
862 |
+
'attention_mask': attention_mask,
|
863 |
+
}
|
864 |
+
)
|
865 |
+
return model_inputs
|
866 |
+
|
sam2.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
special_tokens_map.json
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>",
|
5 |
+
"<|action_start|>",
|
6 |
+
"<|action_end|>",
|
7 |
+
"<|interpreter|>",
|
8 |
+
"<|plugin|>",
|
9 |
+
"<img>",
|
10 |
+
"</img>",
|
11 |
+
"<IMG_CONTEXT>",
|
12 |
+
"<quad>",
|
13 |
+
"</quad>",
|
14 |
+
"<ref>",
|
15 |
+
"</ref>",
|
16 |
+
"<box>",
|
17 |
+
"</box>",
|
18 |
+
{
|
19 |
+
"content": "[SEG]",
|
20 |
+
"lstrip": false,
|
21 |
+
"normalized": false,
|
22 |
+
"rstrip": false,
|
23 |
+
"single_word": false
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"content": "<p>",
|
27 |
+
"lstrip": false,
|
28 |
+
"normalized": false,
|
29 |
+
"rstrip": false,
|
30 |
+
"single_word": false
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"content": "</p>",
|
34 |
+
"lstrip": false,
|
35 |
+
"normalized": false,
|
36 |
+
"rstrip": false,
|
37 |
+
"single_word": false
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"content": "<vp>",
|
41 |
+
"lstrip": false,
|
42 |
+
"normalized": false,
|
43 |
+
"rstrip": false,
|
44 |
+
"single_word": false
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"content": "</vp>",
|
48 |
+
"lstrip": false,
|
49 |
+
"normalized": false,
|
50 |
+
"rstrip": false,
|
51 |
+
"single_word": false
|
52 |
+
}
|
53 |
+
],
|
54 |
+
"bos_token": {
|
55 |
+
"content": "<s>",
|
56 |
+
"lstrip": false,
|
57 |
+
"normalized": false,
|
58 |
+
"rstrip": false,
|
59 |
+
"single_word": false
|
60 |
+
},
|
61 |
+
"eos_token": {
|
62 |
+
"content": "</s>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": false,
|
66 |
+
"single_word": false
|
67 |
+
},
|
68 |
+
"pad_token": {
|
69 |
+
"content": "</s>",
|
70 |
+
"lstrip": false,
|
71 |
+
"normalized": false,
|
72 |
+
"rstrip": false,
|
73 |
+
"single_word": false
|
74 |
+
},
|
75 |
+
"unk_token": {
|
76 |
+
"content": "<unk>",
|
77 |
+
"lstrip": false,
|
78 |
+
"normalized": false,
|
79 |
+
"rstrip": false,
|
80 |
+
"single_word": false
|
81 |
+
}
|
82 |
+
}
|
templates.py
ADDED
@@ -0,0 +1,170 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
PROMPT_TEMPLATE = dict(
|
3 |
+
default=dict(
|
4 |
+
SYSTEM='<|System|>:{system}\n',
|
5 |
+
INSTRUCTION='<|User|>:{input}\n<|Bot|>:',
|
6 |
+
SEP='\n'),
|
7 |
+
zephyr=dict(
|
8 |
+
SYSTEM='<|system|>\n{system}\n',
|
9 |
+
INSTRUCTION='<|user|>\n{input}\n<|assistant|>\n',
|
10 |
+
SEP='\n'),
|
11 |
+
internlm_chat=dict(
|
12 |
+
SYSTEM='<|System|>:{system}\n',
|
13 |
+
INSTRUCTION='<|User|>:{input}<eoh>\n<|Bot|>:',
|
14 |
+
SUFFIX='<eoa>',
|
15 |
+
SUFFIX_AS_EOS=True,
|
16 |
+
SEP='\n',
|
17 |
+
STOP_WORDS=['<eoa>']),
|
18 |
+
internlm2_chat=dict(
|
19 |
+
SYSTEM='<|im_start|>system\n{system}<|im_end|>\n',
|
20 |
+
INSTRUCTION=('<|im_start|>user\n{input}<|im_end|>\n'
|
21 |
+
'<|im_start|>assistant\n'),
|
22 |
+
SUFFIX='<|im_end|>',
|
23 |
+
SUFFIX_AS_EOS=True,
|
24 |
+
SEP='\n',
|
25 |
+
STOP_WORDS=['<|im_end|>']),
|
26 |
+
moss_sft=dict(
|
27 |
+
SYSTEM='{system}\n',
|
28 |
+
INSTRUCTION='<|Human|>: {input}<eoh>\n',
|
29 |
+
SEP='\n',
|
30 |
+
STOP_WORDS=['<eoc>', '<eom>']),
|
31 |
+
llama2_chat=dict(
|
32 |
+
SYSTEM=(
|
33 |
+
'[INST] <<SYS>>\n You are a helpful, respectful and honest '
|
34 |
+
'assistant. Always answer as helpfully as possible, while being '
|
35 |
+
'safe. Your answers should not include any harmful, unethical, '
|
36 |
+
'racist, sexist, toxic, dangerous, or illegal content. Please '
|
37 |
+
'ensure that your responses are socially unbiased and positive in '
|
38 |
+
'nature.\n{system}\n<</SYS>>\n [/INST] '),
|
39 |
+
INSTRUCTION='[INST] {input} [/INST]',
|
40 |
+
SEP='\n'),
|
41 |
+
code_llama_chat=dict(
|
42 |
+
SYSTEM='{system}\n', INSTRUCTION='[INST] {input} [/INST]'),
|
43 |
+
chatglm2=dict(
|
44 |
+
SYSTEM='{system}\n',
|
45 |
+
INSTRUCTION='[Round {round}]\n\n问:{input}\n\n答:',
|
46 |
+
SEP='\n\n'),
|
47 |
+
chatglm3=dict(
|
48 |
+
SYSTEM='<|system|>\n{system}',
|
49 |
+
INSTRUCTION='<|user|>\n{input}<|assistant|>\n',
|
50 |
+
SEP='\n'),
|
51 |
+
qwen_chat=dict(
|
52 |
+
SYSTEM=('<|im_start|>system\n{system}<|im_end|>\n'),
|
53 |
+
INSTRUCTION=('<|im_start|>user\n{input}<|im_end|>\n'
|
54 |
+
'<|im_start|>assistant\n'),
|
55 |
+
SUFFIX='<|im_end|>',
|
56 |
+
SUFFIX_AS_EOS=True,
|
57 |
+
SEP='\n',
|
58 |
+
STOP_WORDS=['<|im_end|>', '<|endoftext|>']),
|
59 |
+
baichuan_chat=dict(
|
60 |
+
SYSTEM='{system}\n',
|
61 |
+
INSTRUCTION='<reserved_102>{input}<reserved_103>',
|
62 |
+
SEP='\n'),
|
63 |
+
baichuan2_chat=dict(
|
64 |
+
SYSTEM='{system}\n',
|
65 |
+
INSTRUCTION='<reserved_106>{input}<reserved_107>',
|
66 |
+
SEP='\n'),
|
67 |
+
wizardlm=dict(
|
68 |
+
SYSTEM=('A chat between a curious user and an artificial '
|
69 |
+
'intelligence assistant. The assistant gives '
|
70 |
+
'helpful, detailed, and polite answers to the '
|
71 |
+
'user\'s questions. {system}\n '),
|
72 |
+
INSTRUCTION=('USER: {input} ASSISTANT:'),
|
73 |
+
SEP='\n'),
|
74 |
+
wizardcoder=dict(
|
75 |
+
SYSTEM=(
|
76 |
+
'Below is an instruction that describes a task. '
|
77 |
+
'Write a response that appropriately completes the request.\n\n'
|
78 |
+
'{system}\n '),
|
79 |
+
INSTRUCTION=('### Instruction:\n{input}\n\n### Response:'),
|
80 |
+
SEP='\n\n'),
|
81 |
+
vicuna=dict(
|
82 |
+
SYSTEM=('A chat between a curious user and an artificial '
|
83 |
+
'intelligence assistant. The assistant gives '
|
84 |
+
'helpful, detailed, and polite answers to the '
|
85 |
+
'user\'s questions. {system}\n '),
|
86 |
+
INSTRUCTION=('USER: {input} ASSISTANT:'),
|
87 |
+
SEP='\n'),
|
88 |
+
deepseek_coder=dict(
|
89 |
+
SYSTEM=('You are an AI programming assistant, utilizing '
|
90 |
+
'the DeepSeek Coder model, developed by DeepSeek'
|
91 |
+
'Company, and you only answer questions related '
|
92 |
+
'to computer science. For politically sensitive '
|
93 |
+
'questions, security and privacy issues, and '
|
94 |
+
'other non-computer science questions, you will '
|
95 |
+
'refuse to answer. {system}\n'),
|
96 |
+
INSTRUCTION=('### Instruction:\n{input}\n### Response:\n'),
|
97 |
+
SEP='\n'),
|
98 |
+
# TODO: deprecation, v0.2.0
|
99 |
+
deepseekcoder=dict(
|
100 |
+
SYSTEM=('You are an AI programming assistant, utilizing '
|
101 |
+
'the DeepSeek Coder model, developed by DeepSeek'
|
102 |
+
'Company, and you only answer questions related '
|
103 |
+
'to computer science. For politically sensitive '
|
104 |
+
'questions, security and privacy issues, and '
|
105 |
+
'other non-computer science questions, you will '
|
106 |
+
'refuse to answer. {system}\n'),
|
107 |
+
INSTRUCTION=('### Instruction:\n{input}\n### Response:\n'),
|
108 |
+
SEP='\n'),
|
109 |
+
deepseek_moe=dict(
|
110 |
+
SYSTEM=('[INST] {system} [/INST]\n'),
|
111 |
+
INSTRUCTION=('[INST] {input} [/INST]'),
|
112 |
+
SEP='\n'),
|
113 |
+
deepseek_v2=dict(
|
114 |
+
SYSTEM='{system}\n\n',
|
115 |
+
INSTRUCTION='User: {input}\n\nAssistant: ',
|
116 |
+
SUFFIX='<|end▁of▁sentence|>',
|
117 |
+
SUFFIX_AS_EOS=True,
|
118 |
+
STOP_WORDS=['<|end▁of▁sentence|>']),
|
119 |
+
mistral=dict(
|
120 |
+
SYSTEM=('[INST] {system} [/INST]\n'),
|
121 |
+
INSTRUCTION=('[INST] {input} [/INST]'),
|
122 |
+
SEP='\n'),
|
123 |
+
mixtral=dict(
|
124 |
+
SYSTEM=('[INST] {system} [/INST]\n'),
|
125 |
+
INSTRUCTION=('[INST] {input} [/INST]'),
|
126 |
+
SEP='\n'),
|
127 |
+
minicpm=dict(INSTRUCTION=('<用户> {input} <AI>'), SEP='\n'),
|
128 |
+
minicpm3=dict(
|
129 |
+
SYSTEM=('<|im_start|>system\n{system}<|im_end|>\n'),
|
130 |
+
INSTRUCTION=('<|im_start|>user\n{input}<|im_end|>\n'
|
131 |
+
'<|im_start|>assistant\n'),
|
132 |
+
SUFFIX='<|im_end|>',
|
133 |
+
SUFFIX_AS_EOS=True,
|
134 |
+
SEP='\n',
|
135 |
+
STOP_WORDS=['<|im_end|>', '<|endoftext|>']),
|
136 |
+
gemma=dict(
|
137 |
+
# `system` field is extended by xtuner
|
138 |
+
SYSTEM=('<start_of_turn>system\n{system}<end_of_turn>\n'),
|
139 |
+
INSTRUCTION=('<start_of_turn>user\n{input}<end_of_turn>\n'
|
140 |
+
'<start_of_turn>model\n'),
|
141 |
+
SUFFIX='<end_of_turn>',
|
142 |
+
SUFFIX_AS_EOS=False,
|
143 |
+
SEP='\n',
|
144 |
+
STOP_WORDS=['<end_of_turn>']),
|
145 |
+
cohere_chat=dict(
|
146 |
+
SYSTEM=('<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>{system}'
|
147 |
+
'<|END_OF_TURN_TOKEN|>'),
|
148 |
+
INSTRUCTION=(
|
149 |
+
'<|START_OF_TURN_TOKEN|><|USER_TOKEN|>{input}<|END_OF_TURN_TOKEN|>'
|
150 |
+
'<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>'),
|
151 |
+
SUFFIX='<|END_OF_TURN_TOKEN|>',
|
152 |
+
SUFFIX_AS_EOS=True,
|
153 |
+
STOP_WORDS=['<|END_OF_TURN_TOKEN|>']),
|
154 |
+
llama3_chat=dict(
|
155 |
+
SYSTEM=('<|start_header_id|>system<|end_header_id|>\n\n'
|
156 |
+
'{system}<|eot_id|>'),
|
157 |
+
INSTRUCTION=(
|
158 |
+
'<|start_header_id|>user<|end_header_id|>\n\n{input}<|eot_id|>'
|
159 |
+
'<|start_header_id|>assistant<|end_header_id|>\n\n'),
|
160 |
+
SUFFIX='<|eot_id|>',
|
161 |
+
SUFFIX_AS_EOS=True,
|
162 |
+
STOP_WORDS=['<|eot_id|>']),
|
163 |
+
phi3_chat=dict(
|
164 |
+
SYSTEM='<|system|>\n{system}<|end|>\n',
|
165 |
+
INSTRUCTION='<|user|>\n{input}<|end|>\n<|assistant|>\n',
|
166 |
+
SUFFIX='<|end|>',
|
167 |
+
SUFFIX_AS_EOS=True,
|
168 |
+
SEP='\n',
|
169 |
+
STOP_WORDS=['<|end|>']),
|
170 |
+
)
|
tokenization_internlm2.py
ADDED
@@ -0,0 +1,235 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
|
2 |
+
#
|
3 |
+
# This code is based on transformers/src/transformers/models/llama/tokenization_llama.py
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
|
17 |
+
"""Tokenization classes for InternLM."""
|
18 |
+
import os
|
19 |
+
from shutil import copyfile
|
20 |
+
from typing import Any, Dict, List, Optional, Tuple
|
21 |
+
|
22 |
+
import sentencepiece as spm
|
23 |
+
from transformers.tokenization_utils import PreTrainedTokenizer
|
24 |
+
from transformers.utils import logging
|
25 |
+
|
26 |
+
logger = logging.get_logger(__name__)
|
27 |
+
|
28 |
+
VOCAB_FILES_NAMES = {'vocab_file': './tokenizer.model'}
|
29 |
+
|
30 |
+
PRETRAINED_VOCAB_FILES_MAP = {}
|
31 |
+
|
32 |
+
|
33 |
+
# Modified from transformers.model.llama.tokenization_llama.LlamaTokenizer
|
34 |
+
class InternLM2Tokenizer(PreTrainedTokenizer):
|
35 |
+
"""
|
36 |
+
Construct a InternLM2 tokenizer. Based on byte-level Byte-Pair-Encoding.
|
37 |
+
|
38 |
+
Args:
|
39 |
+
vocab_file (`str`):
|
40 |
+
Path to the vocabulary file.
|
41 |
+
"""
|
42 |
+
|
43 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
44 |
+
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
45 |
+
model_input_names = ['input_ids', 'attention_mask']
|
46 |
+
_auto_class = 'AutoTokenizer'
|
47 |
+
|
48 |
+
def __init__(
|
49 |
+
self,
|
50 |
+
vocab_file,
|
51 |
+
unk_token='<unk>',
|
52 |
+
bos_token='<s>',
|
53 |
+
eos_token='</s>',
|
54 |
+
pad_token='</s>',
|
55 |
+
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
56 |
+
add_bos_token=True,
|
57 |
+
add_eos_token=False,
|
58 |
+
decode_with_prefix_space=False,
|
59 |
+
clean_up_tokenization_spaces=False,
|
60 |
+
**kwargs,
|
61 |
+
):
|
62 |
+
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
|
63 |
+
self.vocab_file = vocab_file
|
64 |
+
self.add_bos_token = add_bos_token
|
65 |
+
self.add_eos_token = add_eos_token
|
66 |
+
self.decode_with_prefix_space = decode_with_prefix_space
|
67 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
68 |
+
self.sp_model.Load(vocab_file)
|
69 |
+
self._no_prefix_space_tokens = None
|
70 |
+
super().__init__(
|
71 |
+
bos_token=bos_token,
|
72 |
+
eos_token=eos_token,
|
73 |
+
unk_token=unk_token,
|
74 |
+
pad_token=pad_token,
|
75 |
+
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
76 |
+
**kwargs,
|
77 |
+
)
|
78 |
+
|
79 |
+
@property
|
80 |
+
def no_prefix_space_tokens(self):
|
81 |
+
if self._no_prefix_space_tokens is None:
|
82 |
+
vocab = self.convert_ids_to_tokens(list(range(self.vocab_size)))
|
83 |
+
self._no_prefix_space_tokens = {i for i, tok in enumerate(vocab) if not tok.startswith('▁')}
|
84 |
+
return self._no_prefix_space_tokens
|
85 |
+
|
86 |
+
@property
|
87 |
+
def vocab_size(self):
|
88 |
+
"""Returns vocab size"""
|
89 |
+
return self.sp_model.get_piece_size()
|
90 |
+
|
91 |
+
@property
|
92 |
+
def bos_token_id(self) -> Optional[int]:
|
93 |
+
return self.sp_model.bos_id()
|
94 |
+
|
95 |
+
@property
|
96 |
+
def eos_token_id(self) -> Optional[int]:
|
97 |
+
return self.sp_model.eos_id()
|
98 |
+
|
99 |
+
def get_vocab(self):
|
100 |
+
"""Returns vocab as a dict"""
|
101 |
+
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
|
102 |
+
vocab.update(self.added_tokens_encoder)
|
103 |
+
return vocab
|
104 |
+
|
105 |
+
def _tokenize(self, text):
|
106 |
+
"""Returns a tokenized string."""
|
107 |
+
return self.sp_model.encode(text, out_type=str)
|
108 |
+
|
109 |
+
def _convert_token_to_id(self, token):
|
110 |
+
"""Converts a token (str) in an id using the vocab."""
|
111 |
+
return self.sp_model.piece_to_id(token)
|
112 |
+
|
113 |
+
def _convert_id_to_token(self, index):
|
114 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
115 |
+
token = self.sp_model.IdToPiece(index)
|
116 |
+
return token
|
117 |
+
|
118 |
+
def _maybe_add_prefix_space(self, tokens, decoded):
|
119 |
+
if tokens and tokens[0] not in self.no_prefix_space_tokens:
|
120 |
+
return ' ' + decoded
|
121 |
+
else:
|
122 |
+
return decoded
|
123 |
+
|
124 |
+
def convert_tokens_to_string(self, tokens):
|
125 |
+
"""Converts a sequence of tokens (string) in a single string."""
|
126 |
+
current_sub_tokens = []
|
127 |
+
out_string = ''
|
128 |
+
prev_is_special = False
|
129 |
+
for token in tokens:
|
130 |
+
# make sure that special tokens are not decoded using sentencepiece model
|
131 |
+
if token in self.all_special_tokens:
|
132 |
+
if not prev_is_special:
|
133 |
+
out_string += ' '
|
134 |
+
out_string += self.sp_model.decode(current_sub_tokens) + token
|
135 |
+
prev_is_special = True
|
136 |
+
current_sub_tokens = []
|
137 |
+
else:
|
138 |
+
current_sub_tokens.append(token)
|
139 |
+
prev_is_special = False
|
140 |
+
out_string += self.sp_model.decode(current_sub_tokens)
|
141 |
+
out_string = self.clean_up_tokenization(out_string)
|
142 |
+
out_string = self._maybe_add_prefix_space(tokens=tokens, decoded=out_string)
|
143 |
+
return out_string[1:]
|
144 |
+
|
145 |
+
def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
146 |
+
"""
|
147 |
+
Save the vocabulary and special tokens file to a directory.
|
148 |
+
|
149 |
+
Args:
|
150 |
+
save_directory (`str`):
|
151 |
+
The directory in which to save the vocabulary.
|
152 |
+
|
153 |
+
Returns:
|
154 |
+
`Tuple(str)`: Paths to the files saved.
|
155 |
+
"""
|
156 |
+
if not os.path.isdir(save_directory):
|
157 |
+
logger.error(f'Vocabulary path ({save_directory}) should be a directory')
|
158 |
+
return
|
159 |
+
out_vocab_file = os.path.join(
|
160 |
+
save_directory, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']
|
161 |
+
)
|
162 |
+
|
163 |
+
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
|
164 |
+
copyfile(self.vocab_file, out_vocab_file)
|
165 |
+
elif not os.path.isfile(self.vocab_file):
|
166 |
+
with open(out_vocab_file, 'wb') as fi:
|
167 |
+
content_spiece_model = self.sp_model.serialized_model_proto()
|
168 |
+
fi.write(content_spiece_model)
|
169 |
+
|
170 |
+
return (out_vocab_file,)
|
171 |
+
|
172 |
+
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
|
173 |
+
if self.add_bos_token:
|
174 |
+
bos_token_ids = [self.bos_token_id]
|
175 |
+
else:
|
176 |
+
bos_token_ids = []
|
177 |
+
|
178 |
+
output = bos_token_ids + token_ids_0
|
179 |
+
|
180 |
+
if token_ids_1 is not None:
|
181 |
+
output = output + token_ids_1
|
182 |
+
|
183 |
+
if self.add_eos_token:
|
184 |
+
output = output + [self.eos_token_id]
|
185 |
+
|
186 |
+
return output
|
187 |
+
|
188 |
+
def get_special_tokens_mask(
|
189 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
190 |
+
) -> List[int]:
|
191 |
+
"""
|
192 |
+
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
193 |
+
special tokens using the tokenizer `prepare_for_model` method.
|
194 |
+
|
195 |
+
Args:
|
196 |
+
token_ids_0 (`List[int]`):
|
197 |
+
List of IDs.
|
198 |
+
token_ids_1 (`List[int]`, *optional*):
|
199 |
+
Optional second list of IDs for sequence pairs.
|
200 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
201 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
202 |
+
|
203 |
+
Returns:
|
204 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
205 |
+
"""
|
206 |
+
if already_has_special_tokens:
|
207 |
+
return super().get_special_tokens_mask(
|
208 |
+
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
209 |
+
)
|
210 |
+
|
211 |
+
if token_ids_1 is None:
|
212 |
+
return [1] + ([0] * len(token_ids_0)) + [1]
|
213 |
+
return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
|
214 |
+
|
215 |
+
def create_token_type_ids_from_sequences(
|
216 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
217 |
+
) -> List[int]:
|
218 |
+
"""
|
219 |
+
Create a mask from the two sequences passed to be used in a sequence-pair classification task. T5 does not make
|
220 |
+
use of token type ids, therefore a list of zeros is returned.
|
221 |
+
|
222 |
+
Args:
|
223 |
+
token_ids_0 (`List[int]`):
|
224 |
+
List of IDs.
|
225 |
+
token_ids_1 (`List[int]`, *optional*):
|
226 |
+
Optional second list of IDs for sequence pairs.
|
227 |
+
|
228 |
+
Returns:
|
229 |
+
`List[int]`: List of zeros.
|
230 |
+
"""
|
231 |
+
eos = [self.eos_token_id]
|
232 |
+
|
233 |
+
if token_ids_1 is None:
|
234 |
+
return len(token_ids_0 + eos) * [0]
|
235 |
+
return len(token_ids_0 + eos + token_ids_1 + eos) * [0]
|
tokenization_internlm2_fast.py
ADDED
@@ -0,0 +1,211 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
|
2 |
+
#
|
3 |
+
# This code is based on transformers/src/transformers/models/llama/tokenization_llama_fast.py
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
|
17 |
+
"""Tokenization Fast class for InternLM."""
|
18 |
+
import os
|
19 |
+
from shutil import copyfile
|
20 |
+
from typing import Any, Dict, Optional, Tuple
|
21 |
+
|
22 |
+
from tokenizers import Tokenizer, decoders, normalizers, processors
|
23 |
+
from tokenizers.models import BPE
|
24 |
+
from transformers.convert_slow_tokenizer import (SLOW_TO_FAST_CONVERTERS,
|
25 |
+
SentencePieceExtractor,
|
26 |
+
SpmConverter)
|
27 |
+
from transformers.tokenization_utils_fast import PreTrainedTokenizerFast
|
28 |
+
from transformers.utils import logging
|
29 |
+
|
30 |
+
from .tokenization_internlm2 import InternLM2Tokenizer
|
31 |
+
|
32 |
+
logger = logging.get_logger(__name__)
|
33 |
+
|
34 |
+
VOCAB_FILES_NAMES = {'vocab_file': './tokenizer.model'}
|
35 |
+
|
36 |
+
|
37 |
+
# Modified from transformers.convert_slow_tokenizer.LlamaConverter
|
38 |
+
class InternLM2Converter(SpmConverter):
|
39 |
+
handle_byte_fallback = True
|
40 |
+
|
41 |
+
def vocab(self, proto):
|
42 |
+
vocab = [
|
43 |
+
('<unk>', 0.0),
|
44 |
+
('<s>', 0.0),
|
45 |
+
('</s>', 0.0),
|
46 |
+
]
|
47 |
+
vocab += [(piece.piece, piece.score) for piece in proto.pieces[3:]]
|
48 |
+
return vocab
|
49 |
+
|
50 |
+
def unk_id(self, proto):
|
51 |
+
unk_id = 0
|
52 |
+
return unk_id
|
53 |
+
|
54 |
+
def decoder(self, replacement, add_prefix_space):
|
55 |
+
return decoders.Sequence(
|
56 |
+
[
|
57 |
+
decoders.Replace('▁', ' '),
|
58 |
+
decoders.ByteFallback(),
|
59 |
+
decoders.Fuse(),
|
60 |
+
decoders.Strip(content=' ', left=1),
|
61 |
+
]
|
62 |
+
)
|
63 |
+
|
64 |
+
def tokenizer(self, proto):
|
65 |
+
model_type = proto.trainer_spec.model_type
|
66 |
+
vocab_scores = self.vocab(proto)
|
67 |
+
# special tokens
|
68 |
+
added_tokens = self.original_tokenizer.added_tokens_decoder
|
69 |
+
for i in range(len(vocab_scores)):
|
70 |
+
piece, score = vocab_scores[i]
|
71 |
+
if i in added_tokens:
|
72 |
+
vocab_scores[i] = (added_tokens[i].content, score)
|
73 |
+
if model_type == 1:
|
74 |
+
raise RuntimeError('InternLM2 is supposed to be a BPE model!')
|
75 |
+
|
76 |
+
elif model_type == 2:
|
77 |
+
_, merges = SentencePieceExtractor(self.original_tokenizer.vocab_file).extract(vocab_scores)
|
78 |
+
bpe_vocab = {word: i for i, (word, _score) in enumerate(vocab_scores)}
|
79 |
+
tokenizer = Tokenizer(
|
80 |
+
BPE(bpe_vocab, merges, unk_token=proto.trainer_spec.unk_piece, fuse_unk=True, byte_fallback=True)
|
81 |
+
)
|
82 |
+
tokenizer.add_special_tokens(
|
83 |
+
[ added_token for index, added_token in added_tokens.items()]
|
84 |
+
)
|
85 |
+
else:
|
86 |
+
raise Exception(
|
87 |
+
"You're trying to run a `Unigram` model but you're file was trained with a different algorithm"
|
88 |
+
)
|
89 |
+
|
90 |
+
return tokenizer
|
91 |
+
|
92 |
+
def normalizer(self, proto):
|
93 |
+
normalizers_list = []
|
94 |
+
if proto.normalizer_spec.add_dummy_prefix:
|
95 |
+
normalizers_list.append(normalizers.Prepend(prepend='▁'))
|
96 |
+
normalizers_list.append(normalizers.Replace(pattern=' ', content='▁'))
|
97 |
+
return normalizers.Sequence(normalizers_list)
|
98 |
+
|
99 |
+
def pre_tokenizer(self, replacement, add_prefix_space):
|
100 |
+
return None
|
101 |
+
|
102 |
+
|
103 |
+
SLOW_TO_FAST_CONVERTERS['InternLM2Tokenizer'] = InternLM2Converter
|
104 |
+
|
105 |
+
|
106 |
+
# Modified from transformers.model.llama.tokenization_llama_fast.LlamaTokenizerFast -> InternLM2TokenizerFast
|
107 |
+
class InternLM2TokenizerFast(PreTrainedTokenizerFast):
|
108 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
109 |
+
slow_tokenizer_class = InternLM2Tokenizer
|
110 |
+
padding_side = 'left'
|
111 |
+
model_input_names = ['input_ids', 'attention_mask']
|
112 |
+
_auto_class = 'AutoTokenizer'
|
113 |
+
|
114 |
+
def __init__(
|
115 |
+
self,
|
116 |
+
vocab_file,
|
117 |
+
unk_token='<unk>',
|
118 |
+
bos_token='<s>',
|
119 |
+
eos_token='</s>',
|
120 |
+
pad_token='</s>',
|
121 |
+
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
122 |
+
add_bos_token=True,
|
123 |
+
add_eos_token=False,
|
124 |
+
decode_with_prefix_space=False,
|
125 |
+
clean_up_tokenization_spaces=False,
|
126 |
+
**kwargs,
|
127 |
+
):
|
128 |
+
super().__init__(
|
129 |
+
vocab_file=vocab_file,
|
130 |
+
unk_token=unk_token,
|
131 |
+
bos_token=bos_token,
|
132 |
+
eos_token=eos_token,
|
133 |
+
pad_token=pad_token,
|
134 |
+
sp_model_kwargs=sp_model_kwargs,
|
135 |
+
add_bos_token=add_bos_token,
|
136 |
+
add_eos_token=add_eos_token,
|
137 |
+
decode_with_prefix_space=decode_with_prefix_space,
|
138 |
+
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
139 |
+
**kwargs,
|
140 |
+
)
|
141 |
+
self._add_bos_token = add_bos_token
|
142 |
+
self._add_eos_token = add_eos_token
|
143 |
+
self.update_post_processor()
|
144 |
+
self.vocab_file = vocab_file
|
145 |
+
|
146 |
+
@property
|
147 |
+
def can_save_slow_tokenizer(self) -> bool:
|
148 |
+
return os.path.isfile(self.vocab_file) if self.vocab_file else False
|
149 |
+
|
150 |
+
def update_post_processor(self):
|
151 |
+
"""
|
152 |
+
Updates the underlying post processor with the current `bos_token` and `eos_token`.
|
153 |
+
"""
|
154 |
+
bos = self.bos_token
|
155 |
+
bos_token_id = self.bos_token_id
|
156 |
+
if bos is None and self.add_bos_token:
|
157 |
+
raise ValueError('add_bos_token = True but bos_token = None')
|
158 |
+
|
159 |
+
eos = self.eos_token
|
160 |
+
eos_token_id = self.eos_token_id
|
161 |
+
if eos is None and self.add_eos_token:
|
162 |
+
raise ValueError('add_eos_token = True but eos_token = None')
|
163 |
+
|
164 |
+
single = f"{(bos+':0 ') if self.add_bos_token else ''}$A:0{(' '+eos+':0') if self.add_eos_token else ''}"
|
165 |
+
pair = f"{single}{(' '+bos+':1') if self.add_bos_token else ''} $B:1{(' '+eos+':1') if self.add_eos_token else ''}"
|
166 |
+
|
167 |
+
special_tokens = []
|
168 |
+
if self.add_bos_token:
|
169 |
+
special_tokens.append((bos, bos_token_id))
|
170 |
+
if self.add_eos_token:
|
171 |
+
special_tokens.append((eos, eos_token_id))
|
172 |
+
self._tokenizer.post_processor = processors.TemplateProcessing(
|
173 |
+
single=single, pair=pair, special_tokens=special_tokens
|
174 |
+
)
|
175 |
+
|
176 |
+
@property
|
177 |
+
def add_eos_token(self):
|
178 |
+
return self._add_eos_token
|
179 |
+
|
180 |
+
@property
|
181 |
+
def add_bos_token(self):
|
182 |
+
return self._add_bos_token
|
183 |
+
|
184 |
+
@add_eos_token.setter
|
185 |
+
def add_eos_token(self, value):
|
186 |
+
self._add_eos_token = value
|
187 |
+
self.update_post_processor()
|
188 |
+
|
189 |
+
@add_bos_token.setter
|
190 |
+
def add_bos_token(self, value):
|
191 |
+
self._add_bos_token = value
|
192 |
+
self.update_post_processor()
|
193 |
+
|
194 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
195 |
+
if not self.can_save_slow_tokenizer:
|
196 |
+
raise ValueError(
|
197 |
+
'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow '
|
198 |
+
'tokenizer.'
|
199 |
+
)
|
200 |
+
|
201 |
+
if not os.path.isdir(save_directory):
|
202 |
+
logger.error(f'Vocabulary path ({save_directory}) should be a directory')
|
203 |
+
return
|
204 |
+
out_vocab_file = os.path.join(
|
205 |
+
save_directory, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']
|
206 |
+
)
|
207 |
+
|
208 |
+
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file):
|
209 |
+
copyfile(self.vocab_file, out_vocab_file)
|
210 |
+
|
211 |
+
return (out_vocab_file,)
|
tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f868398fc4e05ee1e8aeba95ddf18ddcc45b8bce55d5093bead5bbf80429b48b
|
3 |
+
size 1477754
|
tokenizer_config.json
ADDED
@@ -0,0 +1,225 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<unk>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<s>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"92538": {
|
28 |
+
"content": "<|plugin|>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"92539": {
|
36 |
+
"content": "<|interpreter|>",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
},
|
43 |
+
"92540": {
|
44 |
+
"content": "<|action_end|>",
|
45 |
+
"lstrip": false,
|
46 |
+
"normalized": false,
|
47 |
+
"rstrip": false,
|
48 |
+
"single_word": false,
|
49 |
+
"special": true
|
50 |
+
},
|
51 |
+
"92541": {
|
52 |
+
"content": "<|action_start|>",
|
53 |
+
"lstrip": false,
|
54 |
+
"normalized": false,
|
55 |
+
"rstrip": false,
|
56 |
+
"single_word": false,
|
57 |
+
"special": true
|
58 |
+
},
|
59 |
+
"92542": {
|
60 |
+
"content": "<|im_end|>",
|
61 |
+
"lstrip": false,
|
62 |
+
"normalized": false,
|
63 |
+
"rstrip": false,
|
64 |
+
"single_word": false,
|
65 |
+
"special": true
|
66 |
+
},
|
67 |
+
"92543": {
|
68 |
+
"content": "<|im_start|>",
|
69 |
+
"lstrip": false,
|
70 |
+
"normalized": false,
|
71 |
+
"rstrip": false,
|
72 |
+
"single_word": false,
|
73 |
+
"special": true
|
74 |
+
},
|
75 |
+
"92544": {
|
76 |
+
"content": "<img>",
|
77 |
+
"lstrip": false,
|
78 |
+
"normalized": false,
|
79 |
+
"rstrip": false,
|
80 |
+
"single_word": false,
|
81 |
+
"special": true
|
82 |
+
},
|
83 |
+
"92545": {
|
84 |
+
"content": "</img>",
|
85 |
+
"lstrip": false,
|
86 |
+
"normalized": false,
|
87 |
+
"rstrip": false,
|
88 |
+
"single_word": false,
|
89 |
+
"special": true
|
90 |
+
},
|
91 |
+
"92546": {
|
92 |
+
"content": "<IMG_CONTEXT>",
|
93 |
+
"lstrip": false,
|
94 |
+
"normalized": false,
|
95 |
+
"rstrip": false,
|
96 |
+
"single_word": false,
|
97 |
+
"special": true
|
98 |
+
},
|
99 |
+
"92547": {
|
100 |
+
"content": "<quad>",
|
101 |
+
"lstrip": false,
|
102 |
+
"normalized": false,
|
103 |
+
"rstrip": false,
|
104 |
+
"single_word": false,
|
105 |
+
"special": true
|
106 |
+
},
|
107 |
+
"92548": {
|
108 |
+
"content": "</quad>",
|
109 |
+
"lstrip": false,
|
110 |
+
"normalized": false,
|
111 |
+
"rstrip": false,
|
112 |
+
"single_word": false,
|
113 |
+
"special": true
|
114 |
+
},
|
115 |
+
"92549": {
|
116 |
+
"content": "<ref>",
|
117 |
+
"lstrip": false,
|
118 |
+
"normalized": false,
|
119 |
+
"rstrip": false,
|
120 |
+
"single_word": false,
|
121 |
+
"special": true
|
122 |
+
},
|
123 |
+
"92550": {
|
124 |
+
"content": "</ref>",
|
125 |
+
"lstrip": false,
|
126 |
+
"normalized": false,
|
127 |
+
"rstrip": false,
|
128 |
+
"single_word": false,
|
129 |
+
"special": true
|
130 |
+
},
|
131 |
+
"92551": {
|
132 |
+
"content": "<box>",
|
133 |
+
"lstrip": false,
|
134 |
+
"normalized": false,
|
135 |
+
"rstrip": false,
|
136 |
+
"single_word": false,
|
137 |
+
"special": true
|
138 |
+
},
|
139 |
+
"92552": {
|
140 |
+
"content": "</box>",
|
141 |
+
"lstrip": false,
|
142 |
+
"normalized": false,
|
143 |
+
"rstrip": false,
|
144 |
+
"single_word": false,
|
145 |
+
"special": true
|
146 |
+
},
|
147 |
+
"92553": {
|
148 |
+
"content": "[SEG]",
|
149 |
+
"lstrip": false,
|
150 |
+
"normalized": false,
|
151 |
+
"rstrip": false,
|
152 |
+
"single_word": false,
|
153 |
+
"special": true
|
154 |
+
},
|
155 |
+
"92554": {
|
156 |
+
"content": "<p>",
|
157 |
+
"lstrip": false,
|
158 |
+
"normalized": false,
|
159 |
+
"rstrip": false,
|
160 |
+
"single_word": false,
|
161 |
+
"special": true
|
162 |
+
},
|
163 |
+
"92555": {
|
164 |
+
"content": "</p>",
|
165 |
+
"lstrip": false,
|
166 |
+
"normalized": false,
|
167 |
+
"rstrip": false,
|
168 |
+
"single_word": false,
|
169 |
+
"special": true
|
170 |
+
},
|
171 |
+
"92556": {
|
172 |
+
"content": "<vp>",
|
173 |
+
"lstrip": false,
|
174 |
+
"normalized": false,
|
175 |
+
"rstrip": false,
|
176 |
+
"single_word": false,
|
177 |
+
"special": true
|
178 |
+
},
|
179 |
+
"92557": {
|
180 |
+
"content": "</vp>",
|
181 |
+
"lstrip": false,
|
182 |
+
"normalized": false,
|
183 |
+
"rstrip": false,
|
184 |
+
"single_word": false,
|
185 |
+
"special": true
|
186 |
+
}
|
187 |
+
},
|
188 |
+
"additional_special_tokens": [
|
189 |
+
"<|im_start|>",
|
190 |
+
"<|im_end|>",
|
191 |
+
"<|action_start|>",
|
192 |
+
"<|action_end|>",
|
193 |
+
"<|interpreter|>",
|
194 |
+
"<|plugin|>",
|
195 |
+
"<img>",
|
196 |
+
"</img>",
|
197 |
+
"<IMG_CONTEXT>",
|
198 |
+
"<quad>",
|
199 |
+
"</quad>",
|
200 |
+
"<ref>",
|
201 |
+
"</ref>",
|
202 |
+
"<box>",
|
203 |
+
"</box>",
|
204 |
+
"[SEG]",
|
205 |
+
"<p>",
|
206 |
+
"</p>",
|
207 |
+
"<vp>",
|
208 |
+
"</vp>"
|
209 |
+
],
|
210 |
+
"auto_map": {
|
211 |
+
"AutoTokenizer": [
|
212 |
+
"tokenization_internlm2.InternLM2Tokenizer",
|
213 |
+
null
|
214 |
+
]
|
215 |
+
},
|
216 |
+
"bos_token": "<s>",
|
217 |
+
"chat_template": "{{ bos_token }}{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
|
218 |
+
"clean_up_tokenization_spaces": false,
|
219 |
+
"eos_token": "</s>",
|
220 |
+
"model_max_length": 16384,
|
221 |
+
"pad_token": "</s>",
|
222 |
+
"padding_side": "right",
|
223 |
+
"tokenizer_class": "InternLM2Tokenizer",
|
224 |
+
"unk_token": "<unk>"
|
225 |
+
}
|