language:

  • en pipeline_tag: text-generation tags:
  • facebook
  • meta
  • pytorch
  • llama
  • llama-3 license: llama3

license: cc-by-sa-4.0 metrics: - accuracy pipeline_tag: text-generation tags: - code

Model Description

Developed by: Defog, Inc Model type: [Text to SQL] License: [CC-by-SA-4.0] Finetuned from model: [Meta-Llama-3-8B-Instruct]

defog/llama-3-sqlcoder-8b for CTranslate2

The model is quantized version of the meta-llama/Meta-Llama-3-8B-Instruct with int8_float16 quantization and can be used in CTranslate2.

How to use

pip install ctranslate2

This repository for use with CTranslate2.

Use with CTranslate2

This example code is obtained from CTranslate2_transformers and tokenizer AutoTokenizer.
More detailed information about the generate_batch methon can be found at CTranslate2_Generator.generate_batch.

import ctranslate2
import transformers

from huggingface_hub import snapshot_download
model_id = "ByteForge/Defog_llama-3-sqlcoder-8b-ct2-int8_float16"
model_path = snapshot_download(model_id)
model = ctranslate2.Generator(model_path)
tokenizer = transformers.AutoTokenizer.from_pretrained(model_id)

prompt="""
CREATE TABLE stadium (
    stadium_id number,
    location text,
    name text,
    capacity number,
    highest number,
    lowest number,
    average number
)

CREATE TABLE singer (
    singer_id number,
    name text,
    country text,
    song_name text,
    song_release_year text,
    age number,
    is_male others
)

CREATE TABLE concert (
    concert_id number,
    concert_name text,
    theme text,
    stadium_id text,
    year text
)

CREATE TABLE singer_in_concert (
    concert_id number,
    singer_id text
)

-- Using valid SQLite, answer the following questions for the tables provided above.

-- What is the maximum, the average, and the minimum capacity of stadiums ? (Generate 1 Sql query. No explaination needed)

answer:
"""

messages = [
    {"role": "system", "content": "You are SQL Expert. Given a input question and schema, answer with correct sql query"},
    {"role": "user", "content": prompt},
]

input_ids = tokenizer.apply_chat_template(
    messages, 
    tokenize=False, 
    add_generation_prompt=True
)

terminators = [
    tokenizer.eos_token_id,
    tokenizer.convert_tokens_to_ids("<|eot_id|>")
]

input_tokens = tokenizer.convert_ids_to_tokens(tokenizer.encode(input_ids))

results = model.generate_batch([input_tokens], include_prompt_in_result=False, max_length=256, sampling_temperature=0.6, sampling_topp=0.9, end_token=terminators)
output = tokenizer.decode(results[0].sequences_ids[0])

print(output)

Ideal prompt and inference parameters

Set temperature to 0, and do not do sampling.

Downloads last month
3
Inference API
Unable to determine this model's library. Check the docs .