go-inoue commited on
Commit
7b338af
1 Parent(s): c720c1d

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +72 -0
README.md ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - ar
4
+ license: apache-2.0
5
+ widget:
6
+ - text: "إمارة أبوظبي هي إحدى إمارات دولة الإمارات العربية المتحدة السبع"
7
+ ---
8
+ # CAMeLBERT-Mix NER Model
9
+ ## Model description
10
+ **CAMeLBERT-Mix NER Model** is a Named Entity Recognition (NER) model that was built by fine-tuning the [CAMeLBERT Mix](https://huggingface.co/CAMeL-Lab/bert-base-arabic-camelbert-mix/) model.
11
+ For the fine-tuning, we used the [ANERcorp](https://camel.abudhabi.nyu.edu/anercorp/) dataset.
12
+ Our fine-tuning procedure and the hyperparameters we used can be found in our paper *"[The Interplay of Variant, Size, and Task Type in Arabic Pre-trained Language Models](https://arxiv.org/abs/2103.06678)."* Our fine-tuning code can be found [here](https://github.com/CAMeL-Lab/CAMeLBERT).
13
+ ## Intended uses
14
+ You can use the CAMeLBERT-Mix NER model directly as part of our [CAMeL Tools](https://github.com/CAMeL-Lab/camel_tools) NER component (*recommended*) or as part of the transformers pipeline.
15
+ #### How to use
16
+ To use the model with the [CAMeL Tools](https://github.com/CAMeL-Lab/camel_tools) NER component:
17
+ ```python
18
+ >>> from camel_tools.ner import NERecognizer
19
+ >>> from camel_tools.tokenizers.word import simple_word_tokenize
20
+ >>> ner = NERecognizer('CAMeL-Lab/bert-base-arabic-camelbert-mix-ner')
21
+ >>> sentence = simple_word_tokenize('إمارة أبوظبي هي إحدى إمارات دولة الإمارات العربية المتحدة السبع')
22
+ >>> ner.predict_sentence(sentence)
23
+ >>> ['O', 'B-LOC', 'O', 'O', 'O', 'O', 'B-LOC', 'I-LOC', 'I-LOC', 'O']
24
+ ```
25
+ You can also use the NER model directly with a transformers pipeline:
26
+ ```python
27
+ >>> from transformers import pipeline
28
+ >>> ner = pipeline('ner', model='CAMeL-Lab/bert-base-arabic-camelbert-mix-ner')
29
+ >>> ner("إمارة أبوظبي هي إحدى إمارات دولة الإمارات العربية المتحدة السبع")
30
+ [{'word': 'أبوظبي',
31
+ 'score': 0.9895730018615723,
32
+ 'entity': 'B-LOC',
33
+ 'index': 2,
34
+ 'start': 6,
35
+ 'end': 12},
36
+ {'word': 'الإمارات',
37
+ 'score': 0.8156259655952454,
38
+ 'entity': 'B-LOC',
39
+ 'index': 8,
40
+ 'start': 33,
41
+ 'end': 41},
42
+ {'word': 'العربية',
43
+ 'score': 0.890906810760498,
44
+ 'entity': 'I-LOC',
45
+ 'index': 9,
46
+ 'start': 42,
47
+ 'end': 49},
48
+ {'word': 'المتحدة',
49
+ 'score': 0.8169114589691162,
50
+ 'entity': 'I-LOC',
51
+ 'index': 10,
52
+ 'start': 50,
53
+ 'end': 57}]
54
+ ```
55
+ *Note*: to download our models, you would need `transformers>=3.5.0`. Otherwise, you could download the models
56
+ ## Citation
57
+ ```bibtex
58
+ @inproceedings{inoue-etal-2021-interplay,
59
+ title = "The Interplay of Variant, Size, and Task Type in {A}rabic Pre-trained Language Models",
60
+ author = "Inoue, Go and
61
+ Alhafni, Bashar and
62
+ Baimukan, Nurpeiis and
63
+ Bouamor, Houda and
64
+ Habash, Nizar",
65
+ booktitle = "Proceedings of the Sixth Arabic Natural Language Processing Workshop",
66
+ month = apr,
67
+ year = "2021",
68
+ address = "Kyiv, Ukraine (Online)",
69
+ publisher = "Association for Computational Linguistics",
70
+ abstract = "In this paper, we explore the effects of language variants, data sizes, and fine-tuning task types in Arabic pre-trained language models. To do so, we build three pre-trained language models across three variants of Arabic: Modern Standard Arabic (MSA), dialectal Arabic, and classical Arabic, in addition to a fourth language model which is pre-trained on a mix of the three. We also examine the importance of pre-training data size by building additional models that are pre-trained on a scaled-down set of the MSA variant. We compare our different models to each other, as well as to eight publicly available models by fine-tuning them on five NLP tasks spanning 12 datasets. Our results suggest that the variant proximity of pre-training data to fine-tuning data is more important than the pre-training data size. We exploit this insight in defining an optimized system selection model for the studied tasks.",
71
+ }
72
+ ```