FAT5-base-flan-en / rms_norm.py
bourdoiscatie's picture
Upload 10 files
a0e4338 verified
raw
history blame
7.35 kB
# Copyright 2023-present Daniel Han-Chen & the Unsloth team. All rights reserved.
# Copyright 2024 CATIE. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Modifications to the orignal file
# - add weights gradients
# - remove the mask if size is a power of 2
# - support for torch.compile
import triton
import triton.language as tl
import torch
MAX_FUSED_SIZE = 65536
next_power_of_2 = triton.next_power_of_2
def calculate_settings(n):
BLOCK_SIZE = next_power_of_2(n)
if BLOCK_SIZE > MAX_FUSED_SIZE:
raise RuntimeError(f"Cannot launch Triton kernel since n = {n} exceeds "\
f"the maximum CUDA blocksize = {MAX_FUSED_SIZE}.")
num_warps = 4
if BLOCK_SIZE >= 32768: num_warps = 32
elif BLOCK_SIZE >= 8192: num_warps = 16
elif BLOCK_SIZE >= 2048: num_warps = 8
return BLOCK_SIZE, num_warps
@triton.jit
def _rms_layernorm_forward(
Y, Y_row_stride,
X, X_row_stride,
W, W_row_stride,
r, r_row_stride,
n_cols, eps,
BLOCK_SIZE : tl.constexpr,
IS_EVEN_X: tl.constexpr
):
"""
Fast RMS Layernorm kernel
Inspiration from a Triton tutorial:
https://triton-lang.org/main/getting-started/tutorials/05-layer-norm.html
"""
row_idx = tl.program_id(0)
col_offsets = tl.arange(0, BLOCK_SIZE)
mask = col_offsets < n_cols
Y += row_idx * Y_row_stride
X += row_idx * X_row_stride
r += row_idx * r_row_stride
if IS_EVEN_X:
X_row = tl.load(X + col_offsets).to(tl.float32)
W_row = tl.load(W + col_offsets)
else:
X_row = tl.load(X + col_offsets, mask=mask, other=0).to(tl.float32)
W_row = tl.load(W + col_offsets, mask=mask, other=0)
row_var = tl.sum(X_row * X_row, axis = 0) / n_cols
inv_var = tl.math.rsqrt(row_var + eps)
tl.store(r, inv_var)
normed = X_row * inv_var
normed = normed.to(W_row.dtype) # Exact copy from HF
output = normed * W_row
if IS_EVEN_X:
tl.store(Y + col_offsets, output)
else:
tl.store(Y + col_offsets, output, mask=mask)
@triton.jit
def _rms_layernorm_backward(
dY, dY_row_stride,
X, X_row_stride,
W, W_row_stride,
r, r_row_stride,
dW, dW_row_stride,
dX, dX_row_stride,
n_cols, eps,
BLOCK_SIZE : tl.constexpr,
IS_EVEN_X: tl.constexpr
):
"""
Fast RMS Layernorm kernel for the backward pass
Inspiration from a Triton tutorial:
https://triton-lang.org/main/getting-started/tutorials/05-layer-norm.html
"""
row_idx = tl.program_id(0)
col_offsets = tl.arange(0, BLOCK_SIZE)
mask = col_offsets < n_cols
dY += row_idx * dY_row_stride
X += row_idx * X_row_stride
r += row_idx * r_row_stride
dW += row_idx * dW_row_stride
dX += row_idx * dX_row_stride
if IS_EVEN_X:
dY_row = tl.load(dY + col_offsets).to(tl.float32)
X_row = tl.load(X + col_offsets).to(tl.float32)
W_row = tl.load(W + col_offsets).to(tl.float32)
else:
dY_row = tl.load(dY + col_offsets, mask=mask, other=0).to(tl.float32)
X_row = tl.load(X + col_offsets, mask=mask, other=0).to(tl.float32)
W_row = tl.load(W + col_offsets, mask=mask, other=0).to(tl.float32)
# Get saved row variance
inv_var = tl.load(r).to(tl.float32)
normed = X_row * inv_var
dW_row = dY_row * normed
dY_W = dY_row * W_row
rowsum_dY_normed = tl.sum(dY_W * normed, axis = 0)
output = inv_var/n_cols * (n_cols*dY_W - normed*rowsum_dY_normed)
if IS_EVEN_X:
tl.store(dW + col_offsets, dW_row)
tl.store(dX + col_offsets, output)
else:
tl.store(dW + col_offsets, dW_row, mask=mask)
tl.store(dX + col_offsets, output, mask=mask)
# Wrapper for triton kernel for torch.compile - should be unecessary for PyTorch 2.3 ?
torch.library.define("flasht5::rmsnorm_triton_fwd", "(Tensor X, Tensor W, float eps, int n_cols, int n_rows, int BLOCK_SIZE, int num_warps) -> (Tensor, Tensor)")
@torch.library.impl("flasht5::rmsnorm_triton_fwd", "default")
def rmsnorm_triton_fwd(X, W, eps, n_cols, n_rows, BLOCK_SIZE, num_warps):
Y = torch.empty((n_rows, n_cols), dtype=X.dtype, device="cuda")
r = torch.empty(n_rows, dtype=torch.float32, device="cuda")
_rms_layernorm_forward[(n_rows,)](
Y, Y.stride(0),
X, X.stride(0),
W, W.stride(0),
r, r.stride(0),
n_cols, eps,
BLOCK_SIZE=BLOCK_SIZE,
IS_EVEN_X=((n_cols % BLOCK_SIZE) == 0),
num_warps=num_warps
)
return Y, r
@torch.library.impl_abstract("flasht5::rmsnorm_triton_fwd", rmsnorm_triton_fwd)
def rmsnorm_triton_fwd_abstract(X, W, eps, n_cols, n_rows, BLOCK_SIZE, num_warps):
Y = X.new_empty((n_rows, n_cols))
r = X.new_empty((n_rows))
return Y, r
torch.library.define("flasht5::rmsnorm_triton_bwd", "(Tensor dY, Tensor r, Tensor X, Tensor W, float eps, int n_cols, int n_rows, int BLOCK_SIZE, int num_warps) -> (Tensor, Tensor)")
@torch.library.impl("flasht5::rmsnorm_triton_bwd", "default")
def rmsnorm_triton_bwd(dY, r, X, W, eps, n_cols, n_rows, BLOCK_SIZE, num_warps):
dX = torch.empty_like(dY)
dW = torch.empty_like(dY)
_rms_layernorm_backward[(n_rows,)](
dY, dY.stride(0),
X, X.stride(0),
W, 1,
r, 1,
dW, dW.stride(0),
dX, dX.stride(0),
n_cols, eps,
BLOCK_SIZE=BLOCK_SIZE,
IS_EVEN_X=((n_cols % BLOCK_SIZE) == 0),
num_warps=num_warps,
)
return dX, dW
@torch.library.impl_abstract("flasht5::rmsnorm_triton_bwd", rmsnorm_triton_bwd)
def rmsnorm_triton_bwd_abstract(dY, r, X, W, eps, n_cols, n_rows, BLOCK_SIZE, num_warps):
return torch.empty_like(dY), torch.empty_like(dY)
class Fast_RMS_Layernorm(torch.autograd.Function):
@staticmethod
def forward(ctx, X, W, eps):
shape = X.shape
dim = shape[-1]
X = X.view(-1, dim)
n_rows, n_cols = X.shape
BLOCK_SIZE, num_warps = calculate_settings(n_cols)
Y, r = torch.ops.flasht5.rmsnorm_triton_fwd(X, W, eps, n_cols, n_rows, BLOCK_SIZE, num_warps)
ctx.eps = eps
ctx.BLOCK_SIZE = BLOCK_SIZE
ctx.num_warps = num_warps
ctx.save_for_backward(X, W, r)
return Y.view(*shape)
@staticmethod
def backward(ctx, dY):
shape = dY.shape
dim = shape[-1]
dY = dY.view(-1, dim)
X, W, r = ctx.saved_tensors
n_rows, n_cols = dY.shape
dX = torch.empty_like(dY)
dW = torch.empty_like(dY)
dW, dX = torch.ops.flasht5.rmsnorm_triton_bwd(dY, r, X, W, ctx.eps, n_cols, n_rows, ctx.BLOCK_SIZE, ctx.num_warps)
dX = dX.view(*shape)
return dX, dW.sum(0), None
def fast_rms_layernorm(X, W, eps):
out = Fast_RMS_Layernorm.apply(X, W, eps)
return out