FAT5-base-flan-en / modeling_flash_t5.py
bourdoiscatie's picture
Upload 10 files
a0e4338 verified
# From: https://github.com/huggingface/transformers/blob/main/src/transformers/models/t5/modeling_t5.py
from dataclasses import dataclass
import copy
import math
from typing import Optional, Tuple, Union
import torch
from torch import nn
from torch.nn import CrossEntropyLoss
import torch.nn.functional as F
from transformers.modeling_utils import ModuleUtilsMixin
from transformers.modeling_outputs import ModelOutput, Seq2SeqModelOutput, BaseModelOutput
from transformers import PreTrainedModel
try:
from .rms_norm import fast_rms_layernorm
except ImportError:
fast_rms_layernorm = None
try:
from .cross_entropy_loss import fast_cross_entropy_loss
except ImportError:
fast_cross_entropy_loss = None
try:
from .flash_attention_v2_bias import attention as flash_attention_triton
except ImportError:
fast_cross_entropy_loss = None
try:
from .gated_mlp import gated_mlp
except ImportError:
gated_mlp = None
try:
#from flash_attn import flash_attn_kvpacked_func, flash_attn_func
from .fa2_compilable import flash_attn_kvpacked_func, flash_attn_func
except ImportError:
flash_attn_kvpacked_func, flash_attn_func = None, None
from .attn_ref import attn_ref
from .configuration_flash_t5 import FlashT5Config
from .positional_encoding import ALiBiPositionalEncoding, RelativePositionalEncoding, RotaryPositionalEncoding
@dataclass
class EncoderOutput(ModelOutput):
hidden_states: torch.FloatTensor = None
attention_mask: torch.FloatTensor = None
@dataclass
class Seq2SeqLMOutput(ModelOutput):
loss: torch.FloatTensor = None
logits: torch.FloatTensor = None
encoder_outputs: EncoderOutput = None
class FlashT5CrossEntropyLoss(nn.Module):
def __init__(self, z_loss_factor=0.0, label_smoothing=0.0, use_triton_crossentropy=False):
super().__init__()
if use_triton_crossentropy and fast_cross_entropy_loss is None:
raise ImportError("fast_cross_entropy_loss is not available")
self.use_triton_crossentropy = use_triton_crossentropy
self.z_loss_factor = z_loss_factor
self.cross_entropy_loss = nn.CrossEntropyLoss(label_smoothing=label_smoothing)
def compute_zloss(self, logits: torch.Tensor, z_loss: float):
logits_sum = torch.logsumexp(logits, dim=-1, keepdim=True)
log_z = torch.squeeze(logits_sum, axis=-1)
total_z_loss = z_loss * torch.square(log_z)
return total_z_loss.mean()
def forward(self, logits, labels):
if self.use_triton_crossentropy:
return fast_cross_entropy_loss(logits, labels, z_loss_factor=self.z_loss_factor)
# use standard method
batch, seq_len, d = logits.shape
logits_flatten = logits.float().view(batch*seq_len, d) # Must cast to float32 for numerical stability
labels_flatten = labels.view(-1)
loss = self.cross_entropy_loss(logits_flatten, labels_flatten)
z_loss = 0.0
if self.z_loss_factor != 0.0:
z_loss = self.compute_zloss(logits_flatten[labels_flatten != -100],
z_loss=self.z_loss_factor)
return loss, z_loss
class FlashT5LayerNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6, use_triton_layernorm=False):
"""
Construct a layernorm module in the T5 style. No bias and no subtraction of mean.
"""
super().__init__()
if use_triton_layernorm and fast_rms_layernorm is None:
raise ImportError("fast_rms_layernorm is not available")
self.use_triton_layernorm = use_triton_layernorm
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
if self.use_triton_layernorm:
return fast_rms_layernorm(hidden_states, self.weight, self.variance_epsilon)
# T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean
# Square Layer Normalization https://arxiv.org/abs/1910.07467 thus varience is calculated
# w/o mean and there is no bias. Additionally we want to make sure that the accumulation for
# half-precision inputs is done in fp32
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
# convert into half-precision if necessary
if self.weight.dtype in [torch.float16, torch.bfloat16]:
hidden_states = hidden_states.to(self.weight.dtype)
return self.weight * hidden_states
class FlashT5DenseAct(nn.Module):
def __init__(self, config: FlashT5Config):
super().__init__()
self.wi = nn.Linear(config.d_model, config.d_ff, bias=False)
self.dropout = nn.Dropout(config.dropout_rate)
self.act = torch.nn.GELU(approximate='tanh') if config.use_gelu_act else torch.nn.ReLU()
def forward(self, hidden_states):
hidden_states = self.wi(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states = self.dropout(hidden_states)
if (
isinstance(self.wo.weight, torch.Tensor)
and hidden_states.dtype != self.wo.weight.dtype
and self.wo.weight.dtype != torch.int8
):
hidden_states = hidden_states.to(self.wo.weight.dtype)
return hidden_states
class FlashT5DenseGatedAct(nn.Module):
def __init__(self, config: FlashT5Config):
super().__init__()
self.wi_0 = nn.Linear(config.d_model, config.d_ff, bias=False)
self.wi_1 = nn.Linear(config.d_model, config.d_ff, bias=False)
self.dropout = nn.Dropout(config.dropout_rate)
self.act = torch.nn.GELU(approximate='tanh') if config.use_gelu_act else torch.nn.ReLU()
self.use_triton_gated_mlp = config.use_triton_gated_mlp
if self.use_triton_gated_mlp and gated_mlp is None:
raise ImportError("gated_mlp is not available")
self.use_gelu_act = config.use_gelu_act
def forward(self, hidden_states):
if self.use_triton_gated_mlp:
return gated_mlp(hidden_states, self.wi_0.weight, self.wi_1.weight, self.use_gelu_act)
hidden_act = self.act(self.wi_0(hidden_states))
hidden_linear = self.wi_1(hidden_states)
hidden_states = hidden_act * hidden_linear
hidden_states = self.dropout(hidden_states)
return hidden_states
class FlashT5LayerFF(nn.Module):
def __init__(self, config: FlashT5Config):
super().__init__()
if config.use_glu_mlp:
self.act = FlashT5DenseGatedAct(config)
else:
self.act = FlashT5DenseAct(config)
self.layer_norm = FlashT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon, use_triton_layernorm=config.use_triton_layernorm)
self.wo = nn.Linear(config.d_ff, config.d_model, bias=False)
self.dropout = nn.Dropout(config.dropout_rate)
def forward(self, hidden_states):
forwarded_states = self.layer_norm(hidden_states).type_as(hidden_states)
forwarded_states = self.act(forwarded_states)
forwarded_states = self.wo(forwarded_states)
hidden_states = hidden_states + self.dropout(forwarded_states)
return hidden_states
class FlashT5Attention(nn.Module, ModuleUtilsMixin):
def __init__(self, config: FlashT5Config, has_positional_encoding=False, is_causal=False):
super().__init__()
self.is_decoder = config.is_decoder
self.has_positional_encoding = has_positional_encoding
self.is_causal = is_causal
self.relative_attention_num_buckets = config.relative_attention_num_buckets
self.relative_attention_max_distance = config.relative_attention_max_distance
self.d_model = config.d_model
self.key_value_proj_dim = config.d_kv
self.n_heads = config.num_heads
self.p_dropout = config.attention_dropout_rate
self.inner_dim = self.n_heads * self.key_value_proj_dim
self.use_flash_attention = config.use_flash_attention
self.position_encoding_type = config.position_encoding_type
self.max_sequence_length = config.max_sequence_length
self.softmax_scale = 1.0/math.sqrt(self.n_heads)
self.use_full_bias_size = config.use_full_bias_size
if self.use_flash_attention == "triton" and flash_attention_triton is None:
raise ImportError("flash_attention_triton is not available")
elif self.use_flash_attention == "fa2" and flash_attn_func is None:
raise ImportError("Flash Attention 2 is not available")
assert (self.p_dropout == 0.0) or (self.use_flash_attention != "triton"), "Triton attention does not support dropout"
self.pe_encoding = None
if self.position_encoding_type == "ALiBi" and has_positional_encoding:
# build alibi matrix with an upper bound on seq length
self.pe_encoding = ALiBiPositionalEncoding(self.max_sequence_length, self.n_heads, config.alibi_mode, config.use_randomized_position_encoding)
elif self.position_encoding_type == "t5" and has_positional_encoding:
self.pe_encoding = RelativePositionalEncoding(self.relative_attention_num_buckets, self.relative_attention_max_distance, self.n_heads, self.max_sequence_length, config.use_randomized_position_encoding)
elif self.position_encoding_type == "RoPE":
self.pe_encoding = RotaryPositionalEncoding(int(self.key_value_proj_dim * config.rotary_emb_fraction), self.max_sequence_length, config.rotary_base, config.rotary_interleaved, config.rotary_scale_base, config.use_randomized_position_encoding)
self.Wq = nn.Linear(self.d_model, self.inner_dim, bias=False)
self.Wk = nn.Linear(self.d_model, self.inner_dim, bias=False)
self.Wv = nn.Linear(self.d_model, self.inner_dim, bias=False)
self.o = nn.Linear(self.inner_dim, self.d_model, bias=False)
def forward(
self,
hidden_states,
mask=None,
key_value_states=None,
position_bias=None,
):
"""
Self-attention (if key_value_states is None) or attention over source sentence (provided by key_value_states).
"""
# Input is (batch_size, seq_length, dim)
# Mask is (batch_size, key_length) (non-causal) or (batch_size, key_length, key_length)
batch_size, seq_length = hidden_states.shape[:2]
key_length = seq_length if key_value_states is None else key_value_states.shape[1]
q = self.Wq(hidden_states)
if key_value_states is None:
k = self.Wk(hidden_states)
v = self.Wv(hidden_states)
else:
k = self.Wk(key_value_states)
v = self.Wv(key_value_states)
q = q.view(batch_size, seq_length, self.n_heads, self.key_value_proj_dim)
k = k.view(batch_size, key_length, self.n_heads, self.key_value_proj_dim)
v = v.view(batch_size, key_length, self.n_heads, self.key_value_proj_dim)
if position_bias is None and self.pe_encoding is not None:
q, k, v, position_bias = self.pe_encoding(q, k, v)
if position_bias is not None and self.use_full_bias_size and (self.use_flash_attention == "fa2" or self.use_flash_attention == "triton"):
position_bias = position_bias.expand(q.shape[0], q.shape[2], q.shape[1], k.shape[1]).contiguous()
if self.use_flash_attention == "fa2":
output = flash_attn_func(q, k, v, dropout_p=self.p_dropout, softmax_scale=self.softmax_scale, attn_bias=position_bias, causal=self.is_causal)
elif self.use_flash_attention == "triton":
q = q.permute(0, 2, 1, 3)
k = k.permute(0, 2, 1, 3)
v = v.permute(0, 2, 1, 3)
output = flash_attention_triton(q, k, v, position_bias, self.is_causal, self.softmax_scale)
output = output.permute(0, 2, 1, 3)
else: # use flash attention
q = q.permute(0, 2, 1, 3)
k = k.permute(0, 2, 1, 3)
v = v.permute(0, 2, 1, 3)
output = attn_ref(q, k, v, position_bias, dropout_p=self.p_dropout, sm_scale=self.softmax_scale, causal=self.is_causal)
output = output.permute(0, 2, 1, 3)
output = self.o(output.reshape(output.shape[0], output.shape[1], self.inner_dim))
return (output, position_bias)
class FlashT5LayerSelfAttention(nn.Module):
def __init__(self, config, has_positional_encoding=False):
super().__init__()
self.self_attention = FlashT5Attention(config, has_positional_encoding=has_positional_encoding, is_causal=config.is_decoder)
self.layer_norm = FlashT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon, use_triton_layernorm=config.use_triton_layernorm)
self.dropout = nn.Dropout(config.dropout_rate)
def forward(
self,
hidden_states,
attention_mask=None,
position_bias=None,
):
normed_hidden_states = self.layer_norm(hidden_states).type_as(hidden_states)
attention_output = self.self_attention(
normed_hidden_states,
mask=attention_mask,
position_bias=position_bias,
)
hidden_states = hidden_states + self.dropout(attention_output[0])
outputs = (hidden_states,) + attention_output[1:]
return outputs
class FlashT5LayerCrossAttention(nn.Module):
def __init__(self, config):
super().__init__()
self.cross_attention = FlashT5Attention(config, has_positional_encoding=False)
self.layer_norm = FlashT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon, use_triton_layernorm=config.use_triton_layernorm)
self.dropout = nn.Dropout(config.dropout_rate)
def forward(
self,
hidden_states,
key_value_states,
attention_mask=None,
position_bias=None,
):
normed_hidden_states = self.layer_norm(hidden_states)
attention_output = self.cross_attention(
normed_hidden_states,
mask=attention_mask,
key_value_states=key_value_states,
position_bias=position_bias,
)
layer_output = hidden_states + self.dropout(attention_output[0])
outputs = (layer_output,) + attention_output[1:]
return outputs
class FlashT5Block(nn.Module):
def __init__(self, config, has_positional_encoding=False):
super().__init__()
self.is_decoder = config.is_decoder
self.self_attention_layer = FlashT5LayerSelfAttention(config, has_positional_encoding=has_positional_encoding)
if self.is_decoder:
self.cross_attention_layer = FlashT5LayerCrossAttention(config)
self.ff_layer = FlashT5LayerFF(config)
def forward(
self,
hidden_states,
attention_mask=None,
position_bias=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
encoder_decoder_position_bias=None,
):
self_attention_outputs = self.self_attention_layer(
hidden_states,
attention_mask=attention_mask,
position_bias=position_bias,
)
hidden_states = self_attention_outputs[0]
attention_outputs = self_attention_outputs[1:] # Relative position weights
if self.is_decoder and encoder_hidden_states is not None:
cross_attention_outputs = self.cross_attention_layer(
hidden_states,
key_value_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
position_bias=encoder_decoder_position_bias,
)
hidden_states = cross_attention_outputs[0]
# Keep relative position weights
attention_outputs = attention_outputs + cross_attention_outputs[1:]
# Apply Feed Forward layer
hidden_states = self.ff_layer(hidden_states)
outputs = (hidden_states,) + attention_outputs
return outputs # hidden-states, (self-attention position bias), (cross-attention position bias)
class FlashT5Stack(nn.Module, ModuleUtilsMixin):
def __init__(self, config, embed_tokens):
super().__init__()
assert embed_tokens is not None
self.config = config
self.embed_tokens = embed_tokens
self.is_decoder = config.is_decoder
self.use_flash_attention = config.use_flash_attention
self.block = nn.ModuleList(
[FlashT5Block(config, has_positional_encoding=bool(i == 0)) for i in range(config.num_layers)]
)
self.final_layer_norm = FlashT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon, use_triton_layernorm=config.use_triton_layernorm)
self.dropout = nn.Dropout(config.dropout_rate)
def forward(
self,
input_ids=None,
attention_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
inputs_embeds=None,
head_mask=None,
cross_attn_head_mask=None,
past_key_values=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None) -> BaseModelOutput:
input_shape = input_ids.size()
batch_size, seq_length = input_shape
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if torch.is_autocast_enabled() and input_ids.device.type == 'cuda':
inputs_embeds = inputs_embeds.to(torch.get_autocast_gpu_dtype())
# Masking
if attention_mask is None:
attention_mask = torch.ones(batch_size, seq_length, device=inputs_embeds.device, dtype=torch.bool)
if self.is_decoder and encoder_attention_mask is None and encoder_hidden_states is not None:
encoder_seq_length = encoder_hidden_states.shape[1]
encoder_attention_mask = torch.ones(
batch_size, encoder_seq_length, device=inputs_embeds.device, dtype=torch.bool
)
position_bias = None
encoder_decoder_position_bias = None
hidden_states = self.dropout(inputs_embeds)
for _, layer_module in enumerate(self.block):
layer_outputs = layer_module(
hidden_states,
attention_mask=attention_mask,
position_bias=position_bias,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
encoder_decoder_position_bias=encoder_decoder_position_bias,
)
# We share the position biases between the layers - the first layer store them
position_bias = layer_outputs[1]
if self.is_decoder and encoder_hidden_states is not None:
encoder_decoder_position_bias = layer_outputs[2]
hidden_states = layer_outputs[0]
hidden_states = self.final_layer_norm(hidden_states).type_as(hidden_states)
hidden_states = self.dropout(hidden_states)
return BaseModelOutput(
last_hidden_state=hidden_states
)
class FlashT5PreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = FlashT5Config
base_model_prefix = "transformer"
is_parallelizable = False
supports_gradient_checkpointing = True
_no_split_modules = ["FlashT5Block"]
_keep_in_fp32_modules = []
def _init_weights(self, module):
factor = self.config.initializer_factor # Used for testing weights initialization
if isinstance(module, FlashT5LayerNorm):
module.weight.data.fill_(factor * 1.0)
elif isinstance(module, (FlashT5ForConditionalGeneration)):
module.shared.weight.data.normal_(mean=0.0, std=factor * 1.0)
if hasattr(module, "lm_head") and not self.config.tie_word_embeddings:
module.lm_head.weight.data.normal_(mean=0.0, std=factor * self.config.d_model ** -0.5)
elif isinstance(module, FlashT5DenseGatedAct):
d_ff, d_model = module.wi_0.weight.data.size()
module.wi_0.weight.data.normal_(mean=0.0, std=factor * ((d_model) ** -0.5))
module.wi_1.weight.data.normal_(mean=0.0, std=factor * ((d_model) ** -0.5))
elif isinstance(module, FlashT5LayerFF):
d_ff, d_model = module.wo.weight.data.size()
module.wo.weight.data.normal_(mean=0.0, std=factor * ((d_ff) ** -0.5))
elif isinstance(module, FlashT5Attention):
d_model = self.config.d_model
key_value_proj_dim = self.config.d_kv
n_heads = self.config.num_heads
module.Wq.weight.data.normal_(mean=0.0, std=factor * ((d_model * key_value_proj_dim) ** -0.5))
module.Wk.weight.data.normal_(mean=0.0, std=factor * (d_model**-0.5))
module.Wv.weight.data.normal_(mean=0.0, std=factor * (d_model**-0.5))
module.o.weight.data.normal_(mean=0.0, std=factor * ((n_heads * key_value_proj_dim) ** -0.5))
if module.has_positional_encoding:
if hasattr(module.pe_encoding, "relative_attention_bias"):
module.pe_encoding.relative_attention_bias.weight.data.normal_(mean=0.0, std=factor * ((d_model) ** -0.5))
def _shift_right(self, input_ids):
decoder_start_token_id = self.config.decoder_start_token_id
pad_token_id = self.config.pad_token_id
shifted_input_ids = input_ids.new_zeros(input_ids.shape)
shifted_input_ids[..., 1:] = input_ids[..., :-1].clone()
shifted_input_ids[..., 0] = decoder_start_token_id
# replace possible -100 values in labels by `pad_token_id`
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
return shifted_input_ids
class FlashT5Model(FlashT5PreTrainedModel):
def __init__(self, config: FlashT5Config):
super().__init__(config)
self.shared = nn.Embedding(config.vocab_size, config.d_model)
encoder_config = copy.deepcopy(config)
encoder_config.is_decoder = False
encoder_config.use_cache = False
encoder_config.is_encoder_decoder = False
self.encoder = FlashT5Stack(encoder_config, self.shared)
decoder_config = copy.deepcopy(config)
decoder_config.is_decoder = True
decoder_config.is_encoder_decoder = False
decoder_config.num_layers = config.num_decoder_layers
self.decoder = FlashT5Stack(decoder_config, self.shared)
# Initialize weights and apply final processing
self.post_init()
# Model parallel
self.model_parallel = False
self.device_map = None
def get_input_embeddings(self):
return self.shared
def set_input_embeddings(self, new_embeddings):
self.shared = new_embeddings
self.encoder.set_input_embeddings(new_embeddings)
self.decoder.set_input_embeddings(new_embeddings)
def get_encoder(self):
return self.encoder
def get_decoder(self):
return self.decoder
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.BoolTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
decoder_head_mask: Optional[torch.FloatTensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.Tensor] = None,
decoder_inputs_embeds: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.FloatTensor], Seq2SeqModelOutput]:
# Encode if needed (training, first prediction pass)
if encoder_outputs is None:
encoder_outputs = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds
)
hidden_states = encoder_outputs[0]
# Decode
decoder_outputs = self.decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
inputs_embeds=decoder_inputs_embeds,
encoder_hidden_states=hidden_states,
encoder_attention_mask=attention_mask
)
return Seq2SeqModelOutput(
last_hidden_state=decoder_outputs.last_hidden_state,
decoder_hidden_states=decoder_outputs.hidden_states,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
)
class FlashT5ForConditionalGeneration(FlashT5PreTrainedModel):
def __init__(self, config: FlashT5Config):
super().__init__(config)
config.is_encoder_decoder = False
assert not config.tie_word_embeddings
self.config = config
self.model_dim = config.d_model
self.shared = nn.Embedding(config.vocab_size, config.d_model)
encoder_config = copy.deepcopy(config)
encoder_config.is_decoder = False
self.encoder = FlashT5Stack(encoder_config, self.shared)
decoder_config = copy.deepcopy(config)
decoder_config.is_decoder = True
decoder_config.num_layers = config.num_decoder_layers
self.decoder = FlashT5Stack(decoder_config, self.shared)
self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False)
self.loss_fct = FlashT5CrossEntropyLoss(z_loss_factor=config.z_loss,
label_smoothing=config.label_smoothing,
use_triton_crossentropy=config.use_triton_crossentropy)
# Initialize weights and apply final processing
self.post_init()
def prepare_inputs_for_generation(
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
):
# do nothing
model_inputs = {"input_ids": input_ids, "attention_mask": attention_mask}
return model_inputs
def get_input_embeddings(self):
return self.shared
def set_input_embeddings(self, value):
self.shared = value
def generate(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
max_length = 32,
**kwargs,
) -> torch.LongTensor:
"""
input_ids: B x L_encoder, int64
attention_mask: B x L_encoder, int64
1 for tokens to attend to, 0 for tokens to ignore
Generation:
Starts with 0, ends with 1, padding is 0
# For 20 input/outputs, the diff between my implementation and HF is 9.8s vs 11.4s
"""
B, _ = input_ids.size()
labels = torch.zeros(B, 1, dtype=torch.long, device=input_ids.device)
encoder_outputs = None
for _ in range(max_length):
out = self.forward(
input_ids=input_ids,
attention_mask=attention_mask,
decoder_input_ids=labels,
encoder_outputs=encoder_outputs,
)
encoder_outputs = out.encoder_outputs
top_labels = out.logits[:, -1].argmax(-1).unsqueeze(-1)
labels = torch.cat([labels, top_labels], dim=-1)
if (labels == 1).sum(-1).clamp(min=0, max=1).sum().item() == B:
break
labels[:, -1] = 1
# Mask out the padding, i.e., all positions after the first 1 with 0
B, L = labels.size()
mask = torch.arange(L, device=labels.device).unsqueeze(0) <= (labels == 1).long().argmax(-1).unsqueeze(-1)
labels = labels.masked_fill(~mask, 0)
return labels
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.BoolTensor] = None,
labels: Optional[torch.LongTensor] = None,
encoder_outputs = None,
) -> Seq2SeqLMOutput:
"""
input_ids: B x L_encoder, int64
attention_mask: B x L_encoder, int64
1 for tokens to attend to, 0 for tokens to ignore
labels: B x L_decoder, int64
"""
if encoder_outputs is None:
encoder_outputs = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
)
hidden_states = encoder_outputs.hidden_states
if labels is not None and decoder_input_ids is None:
decoder_input_ids = self._shift_right(labels)
decoder_outputs = self.decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
encoder_hidden_states=hidden_states,
encoder_attention_mask=attention_mask,
)
sequence_output = decoder_outputs[0]
lm_logits = self.lm_head(sequence_output)
loss = None
if labels is not None:
loss, z_loss = self.loss_fct(lm_logits, labels)
loss += z_loss
return Seq2SeqLMOutput(
loss=loss,
logits=lm_logits,
encoder_outputs=encoder_outputs,
)
class FlashT5EncoderModel(FlashT5PreTrainedModel):
_tied_weights_keys = ["encoder.embed_tokens.weight"]
def __init__(self, config: FlashT5Config):
super().__init__(config)
self.shared = nn.Embedding(config.vocab_size, config.d_model)
encoder_config = copy.deepcopy(config)
encoder_config.use_cache = False
encoder_config.is_encoder_decoder = False
self.encoder = FlashT5Stack(encoder_config, self.shared)
# Initialize weights and apply final processing
self.post_init()
# Model parallel
self.model_parallel = False
self.device_map = None
def parallelize(self, device_map=None):
warnings.warn(
"`T5EncoderModel.parallelize` is deprecated and will be removed in v5 of Transformers, you should load"
" your model with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own"
" `device_map` but it needs to be a dictionary module_name to device, so for instance {'block.0': 0,"
" 'block.1': 1, ...}",
FutureWarning,
)
self.device_map = (
get_device_map(len(self.encoder.block), range(torch.cuda.device_count()))
if device_map is None
else device_map
)
assert_device_map(self.device_map, len(self.encoder.block))
self.encoder.parallelize(self.device_map)
self.model_parallel = True
def deparallelize(self):
warnings.warn(
"Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.",
FutureWarning,
)
self.encoder.deparallelize()
self.encoder = self.encoder.to("cpu")
self.model_parallel = False
self.device_map = None
torch.cuda.empty_cache()
def get_input_embeddings(self):
return self.shared
def set_input_embeddings(self, new_embeddings):
self.shared = new_embeddings
self.encoder.set_input_embeddings(new_embeddings)
def get_encoder(self):
return self.encoder
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.block[layer].layer[0].SelfAttention.prune_heads(heads)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.FloatTensor], BaseModelOutput]:
r"""
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, T5EncoderModel
>>> tokenizer = AutoTokenizer.from_pretrained("t5-small")
>>> model = T5EncoderModel.from_pretrained("t5-small")
>>> input_ids = tokenizer(
... "Studies have been shown that owning a dog is good for you", return_tensors="pt"
... ).input_ids # Batch size 1
>>> outputs = model(input_ids=input_ids)
>>> last_hidden_states = outputs.last_hidden_state
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
encoder_outputs = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
return encoder_outputs