File size: 7,348 Bytes
4f41cdf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 |
# Copyright 2023-present Daniel Han-Chen & the Unsloth team. All rights reserved.
# Copyright 2024 CATIE. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Modifications to the orignal file
# - add weights gradients
# - remove the mask if size is a power of 2
# - support for torch.compile
import triton
import triton.language as tl
import torch
MAX_FUSED_SIZE = 65536
next_power_of_2 = triton.next_power_of_2
def calculate_settings(n):
BLOCK_SIZE = next_power_of_2(n)
if BLOCK_SIZE > MAX_FUSED_SIZE:
raise RuntimeError(f"Cannot launch Triton kernel since n = {n} exceeds "\
f"the maximum CUDA blocksize = {MAX_FUSED_SIZE}.")
num_warps = 4
if BLOCK_SIZE >= 32768: num_warps = 32
elif BLOCK_SIZE >= 8192: num_warps = 16
elif BLOCK_SIZE >= 2048: num_warps = 8
return BLOCK_SIZE, num_warps
@triton.jit
def _rms_layernorm_forward(
Y, Y_row_stride,
X, X_row_stride,
W, W_row_stride,
r, r_row_stride,
n_cols, eps,
BLOCK_SIZE : tl.constexpr,
IS_EVEN_X: tl.constexpr
):
"""
Fast RMS Layernorm kernel
Inspiration from a Triton tutorial:
https://triton-lang.org/main/getting-started/tutorials/05-layer-norm.html
"""
row_idx = tl.program_id(0)
col_offsets = tl.arange(0, BLOCK_SIZE)
mask = col_offsets < n_cols
Y += row_idx * Y_row_stride
X += row_idx * X_row_stride
r += row_idx * r_row_stride
if IS_EVEN_X:
X_row = tl.load(X + col_offsets).to(tl.float32)
W_row = tl.load(W + col_offsets)
else:
X_row = tl.load(X + col_offsets, mask=mask, other=0).to(tl.float32)
W_row = tl.load(W + col_offsets, mask=mask, other=0)
row_var = tl.sum(X_row * X_row, axis = 0) / n_cols
inv_var = tl.math.rsqrt(row_var + eps)
tl.store(r, inv_var)
normed = X_row * inv_var
normed = normed.to(W_row.dtype) # Exact copy from HF
output = normed * W_row
if IS_EVEN_X:
tl.store(Y + col_offsets, output)
else:
tl.store(Y + col_offsets, output, mask=mask)
@triton.jit
def _rms_layernorm_backward(
dY, dY_row_stride,
X, X_row_stride,
W, W_row_stride,
r, r_row_stride,
dW, dW_row_stride,
dX, dX_row_stride,
n_cols, eps,
BLOCK_SIZE : tl.constexpr,
IS_EVEN_X: tl.constexpr
):
"""
Fast RMS Layernorm kernel for the backward pass
Inspiration from a Triton tutorial:
https://triton-lang.org/main/getting-started/tutorials/05-layer-norm.html
"""
row_idx = tl.program_id(0)
col_offsets = tl.arange(0, BLOCK_SIZE)
mask = col_offsets < n_cols
dY += row_idx * dY_row_stride
X += row_idx * X_row_stride
r += row_idx * r_row_stride
dW += row_idx * dW_row_stride
dX += row_idx * dX_row_stride
if IS_EVEN_X:
dY_row = tl.load(dY + col_offsets).to(tl.float32)
X_row = tl.load(X + col_offsets).to(tl.float32)
W_row = tl.load(W + col_offsets).to(tl.float32)
else:
dY_row = tl.load(dY + col_offsets, mask=mask, other=0).to(tl.float32)
X_row = tl.load(X + col_offsets, mask=mask, other=0).to(tl.float32)
W_row = tl.load(W + col_offsets, mask=mask, other=0).to(tl.float32)
# Get saved row variance
inv_var = tl.load(r).to(tl.float32)
normed = X_row * inv_var
dW_row = dY_row * normed
dY_W = dY_row * W_row
rowsum_dY_normed = tl.sum(dY_W * normed, axis = 0)
output = inv_var/n_cols * (n_cols*dY_W - normed*rowsum_dY_normed)
if IS_EVEN_X:
tl.store(dW + col_offsets, dW_row)
tl.store(dX + col_offsets, output)
else:
tl.store(dW + col_offsets, dW_row, mask=mask)
tl.store(dX + col_offsets, output, mask=mask)
# Wrapper for triton kernel for torch.compile - should be unecessary for PyTorch 2.3 ?
torch.library.define("flasht5::rmsnorm_triton_fwd", "(Tensor X, Tensor W, float eps, int n_cols, int n_rows, int BLOCK_SIZE, int num_warps) -> (Tensor, Tensor)")
@torch.library.impl("flasht5::rmsnorm_triton_fwd", "default")
def rmsnorm_triton_fwd(X, W, eps, n_cols, n_rows, BLOCK_SIZE, num_warps):
Y = torch.empty((n_rows, n_cols), dtype=X.dtype, device="cuda")
r = torch.empty(n_rows, dtype=torch.float32, device="cuda")
_rms_layernorm_forward[(n_rows,)](
Y, Y.stride(0),
X, X.stride(0),
W, W.stride(0),
r, r.stride(0),
n_cols, eps,
BLOCK_SIZE=BLOCK_SIZE,
IS_EVEN_X=((n_cols % BLOCK_SIZE) == 0),
num_warps=num_warps
)
return Y, r
@torch.library.impl_abstract("flasht5::rmsnorm_triton_fwd", rmsnorm_triton_fwd)
def rmsnorm_triton_fwd_abstract(X, W, eps, n_cols, n_rows, BLOCK_SIZE, num_warps):
Y = X.new_empty((n_rows, n_cols))
r = X.new_empty((n_rows))
return Y, r
torch.library.define("flasht5::rmsnorm_triton_bwd", "(Tensor dY, Tensor r, Tensor X, Tensor W, float eps, int n_cols, int n_rows, int BLOCK_SIZE, int num_warps) -> (Tensor, Tensor)")
@torch.library.impl("flasht5::rmsnorm_triton_bwd", "default")
def rmsnorm_triton_bwd(dY, r, X, W, eps, n_cols, n_rows, BLOCK_SIZE, num_warps):
dX = torch.empty_like(dY)
dW = torch.empty_like(dY)
_rms_layernorm_backward[(n_rows,)](
dY, dY.stride(0),
X, X.stride(0),
W, 1,
r, 1,
dW, dW.stride(0),
dX, dX.stride(0),
n_cols, eps,
BLOCK_SIZE=BLOCK_SIZE,
IS_EVEN_X=((n_cols % BLOCK_SIZE) == 0),
num_warps=num_warps,
)
return dX, dW
@torch.library.impl_abstract("flasht5::rmsnorm_triton_bwd", rmsnorm_triton_bwd)
def rmsnorm_triton_bwd_abstract(dY, r, X, W, eps, n_cols, n_rows, BLOCK_SIZE, num_warps):
return torch.empty_like(dY), torch.empty_like(dY)
class Fast_RMS_Layernorm(torch.autograd.Function):
@staticmethod
def forward(ctx, X, W, eps):
shape = X.shape
dim = shape[-1]
X = X.view(-1, dim)
n_rows, n_cols = X.shape
BLOCK_SIZE, num_warps = calculate_settings(n_cols)
Y, r = torch.ops.flasht5.rmsnorm_triton_fwd(X, W, eps, n_cols, n_rows, BLOCK_SIZE, num_warps)
ctx.eps = eps
ctx.BLOCK_SIZE = BLOCK_SIZE
ctx.num_warps = num_warps
ctx.save_for_backward(X, W, r)
return Y.view(*shape)
@staticmethod
def backward(ctx, dY):
shape = dY.shape
dim = shape[-1]
dY = dY.view(-1, dim)
X, W, r = ctx.saved_tensors
n_rows, n_cols = dY.shape
dX = torch.empty_like(dY)
dW = torch.empty_like(dY)
dW, dX = torch.ops.flasht5.rmsnorm_triton_bwd(dY, r, X, W, ctx.eps, n_cols, n_rows, ctx.BLOCK_SIZE, ctx.num_warps)
dX = dX.view(*shape)
return dX, dW.sum(0), None
def fast_rms_layernorm(X, W, eps):
out = Fast_RMS_Layernorm.apply(X, W, eps)
return out
|