|
|
|
|
|
from typing import Optional, Union |
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
|
|
|
|
import flash_attn_2_cuda as flash_attn_cuda |
|
|
|
|
|
|
|
torch.library.define("fa2::fwd", "(Tensor q, Tensor k, Tensor v, Tensor out, Tensor alibi_slopes, float dropout_p, float softmax_scale, bool causal, int window_size_left, int window_size_right, Tensor attn_bias, bool return_softmax, Tensor gen_) -> (Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor)") |
|
|
|
@torch.library.impl("fa2::fwd", "default") |
|
def cuda_fa2_fwd( |
|
q: torch.Tensor, |
|
k: torch.Tensor, |
|
v: torch.Tensor, |
|
out: torch.Tensor, |
|
alibi_slopes: torch.Tensor, |
|
dropout_p: float, |
|
softmax_scale: float, |
|
causal: bool, |
|
window_size_left: int, |
|
window_size_right: int, |
|
attn_bias: torch.Tensor, |
|
return_softmax: bool, |
|
gen_: torch.Tensor, |
|
): |
|
|
|
out, q, k, v, out_padded, attn_bias, softmax_lse, S_dmask, rng_state = flash_attn_cuda.fwd(q, k, v, out, alibi_slopes, dropout_p, softmax_scale, causal, window_size_left, window_size_right, attn_bias, return_softmax, None) |
|
return out, q, k, v, out_padded, attn_bias, softmax_lse, S_dmask, rng_state |
|
|
|
@torch.library.impl_abstract("fa2::fwd", cuda_fa2_fwd) |
|
def meta_fa2_fwd( |
|
q: torch.Tensor, |
|
k: torch.Tensor, |
|
v: torch.Tensor, |
|
out: torch.Tensor, |
|
alibi_slopes: torch.Tensor, |
|
dropout_p: float, |
|
softmax_scale: float, |
|
causal: bool, |
|
window_size_left: int, |
|
window_size_right: int, |
|
attn_bias: torch.Tensor, |
|
return_softmax: bool, |
|
gen_: torch.Tensor |
|
): |
|
|
|
round_multiple = lambda x, m: (x + m - 1) // m * m |
|
batch_size = q.shape[0] |
|
seqlen_q = q.shape[1] |
|
seqlen_k = k.shape[1] |
|
num_heads = q.shape[2] |
|
head_dim_og = q.shape[3] |
|
seqlen_q_rounded = round_multiple(seqlen_q, 128) |
|
seqlen_k_rounded = round_multiple(seqlen_k, 128) |
|
seqlen_q_rounded_8 = round_multiple(seqlen_q, 8) |
|
seqlen_k_rounded_8 = round_multiple(seqlen_k, 8) |
|
head_dim = round_multiple(head_dim_og, 8) |
|
|
|
if attn_bias is not None: |
|
batch_size_bias = attn_bias.shape[0] |
|
num_heads_bias = attn_bias.shape[1] |
|
|
|
return (torch.empty_strided((batch_size, seqlen_q, num_heads, head_dim_og), |
|
(head_dim*num_heads*seqlen_q, head_dim*num_heads, head_dim, 1), device=q.device, dtype=q.dtype), |
|
q.new_empty((batch_size, seqlen_q, num_heads, head_dim)), |
|
k.new_empty((batch_size, seqlen_k, num_heads, head_dim)), |
|
v.new_empty((batch_size, seqlen_k, num_heads, head_dim)), |
|
q.new_empty((batch_size, seqlen_q, num_heads, head_dim)), |
|
q.new_empty((batch_size_bias, num_heads_bias, seqlen_q_rounded_8, seqlen_k_rounded_8)) if attn_bias is not None else None, |
|
q.new_empty((batch_size, num_heads, seqlen_q)), |
|
q.new_empty((batch_size, num_heads, seqlen_q_rounded, seqlen_k_rounded)) if return_softmax and (dropout_p > 0) else None, |
|
torch.empty((2), dtype=torch.int64, device=q.device) |
|
) |
|
|
|
torch.library.define("fa2::bwd", "(Tensor dout, Tensor q, Tensor k, Tensor v, Tensor out, Tensor softmax_lse, Tensor dq, Tensor dk, Tensor dv, Tensor alibi_slopes, float dropout_p, float softmax_scale, bool causal, int window_size_left, int window_size_right, bool deterministic, Tensor attn_bias, bool attn_bias_require_grad, Tensor ds, int seqlen_k_orig, Tensor gen_, Tensor rng_state) -> (Tensor, Tensor, Tensor, Tensor, Tensor)") |
|
|
|
@torch.library.impl("fa2::bwd", "default") |
|
def cuda_fa2_bwd( |
|
dout: torch.Tensor, |
|
q: torch.Tensor, |
|
k: torch.Tensor, |
|
v: torch.Tensor, |
|
out: torch.Tensor, |
|
softmax_lse: torch.Tensor, |
|
dq: torch.Tensor, |
|
dk: torch.Tensor, |
|
dv: torch.Tensor, |
|
alibi_slopes: torch.Tensor, |
|
dropout_p: float, |
|
softmax_scale: float, |
|
causal: bool, |
|
window_size_left: int, |
|
window_size_right: int, |
|
deterministic: bool, |
|
attn_bias: torch.Tensor, |
|
attn_bias_require_grad: bool, |
|
ds: torch.Tensor, |
|
seqlen_k_orig: int, |
|
gen_: torch.Tensor, |
|
rng_sate: torch.Tensor |
|
): |
|
dq, dk, dv, ds, s = flash_attn_cuda.bwd(dout, q, k, v, out, softmax_lse, dq, dk, dv, alibi_slopes, dropout_p, softmax_scale, causal, window_size_left, window_size_right, deterministic, attn_bias, attn_bias_require_grad, ds, None, rng_sate) |
|
return dq, dk, dv, ds, s |
|
|
|
@torch.library.impl_abstract("fa2::bwd", cuda_fa2_bwd) |
|
def meta_fa2_bwd( |
|
dout: torch.Tensor, |
|
q: torch.Tensor, |
|
k: torch.Tensor, |
|
v: torch.Tensor, |
|
out: torch.Tensor, |
|
softmax_lse: torch.Tensor, |
|
dq: torch.Tensor, |
|
dk: torch.Tensor, |
|
dv: torch.Tensor, |
|
alibi_slopes: torch.Tensor, |
|
dropout_p: float, |
|
softmax_scale: float, |
|
causal: bool, |
|
window_size_left: int, |
|
window_size_right: int, |
|
deterministic: bool, |
|
attn_bias: torch.Tensor, |
|
attn_bias_require_grad: bool, |
|
ds: torch.Tensor, |
|
seqlen_k_orig: int, |
|
gen_: torch.Tensor, |
|
rng_sate: torch.Tensor |
|
): |
|
|
|
round_multiple = lambda x, m: (x + m - 1) // m * m |
|
batch_size = dout.shape[0] |
|
seqlen_q = dout.shape[1] |
|
seqlen_k = k.shape[1] |
|
seqlen_q_rounded = round_multiple(seqlen_q, 128) |
|
num_heads = dout.shape[2] |
|
head_dim_og = dout.shape[3] |
|
head_dim = round_multiple(head_dim_og, 8) |
|
seqlen_q_round8 = round_multiple(seqlen_q, 8) |
|
seqlen_k_round8 = round_multiple(seqlen_k_orig, 8) |
|
|
|
if attn_bias is not None: |
|
batch_size_bias = attn_bias.shape[0] |
|
num_heads_bias = attn_bias.shape[1] |
|
|
|
return (torch.empty_strided((batch_size, seqlen_q, num_heads, head_dim_og), |
|
(head_dim*num_heads*seqlen_q, head_dim*num_heads, head_dim, 1), device=q.device, dtype=q.dtype), |
|
torch.empty_strided((batch_size, seqlen_k_orig, num_heads, head_dim_og), |
|
(head_dim*num_heads*seqlen_k, head_dim*num_heads, head_dim, 1), device=k.device, dtype=k.dtype), |
|
torch.empty_strided((batch_size, seqlen_k, num_heads, head_dim_og), |
|
(head_dim*num_heads*seqlen_k, head_dim*num_heads, head_dim, 1), device=v.device, dtype=v.dtype), |
|
torch.empty_strided((batch_size_bias, num_heads_bias, seqlen_q, seqlen_k_orig), |
|
(num_heads_bias*seqlen_q_round8*seqlen_k_round8, seqlen_q_round8*seqlen_k_round8, seqlen_q_round8, 1), device=v.device, dtype=v.dtype) |
|
if attn_bias_require_grad else None, |
|
q.new_empty((batch_size, num_heads, seqlen_q_rounded)) |
|
) |
|
|
|
|
|
class FlashAttnQKVPackedFunc(torch.autograd.Function): |
|
@staticmethod |
|
def forward( |
|
ctx, |
|
qkv, |
|
dropout_p, |
|
softmax_scale, |
|
causal, |
|
window_size_left, |
|
window_size_right, |
|
alibi_slopes, |
|
deterministic, |
|
attn_bias, |
|
return_softmax, |
|
return_ds |
|
): |
|
if softmax_scale is None: |
|
softmax_scale = qkv.shape[-1] ** (-0.5) |
|
|
|
out, q_padded, k_padded, v_padded, out_padded, attn_bias_padded, softmax_lse, S_dmask, rng_state = torch.ops.fa2.fwd( |
|
qkv[:, :, 0], |
|
qkv[:, :, 1], |
|
qkv[:, :, 2], |
|
None, |
|
alibi_slopes, |
|
dropout_p, |
|
softmax_scale, |
|
causal, |
|
window_size_left, |
|
window_size_right, |
|
attn_bias, |
|
return_softmax and dropout_p > 0, |
|
None |
|
) |
|
|
|
|
|
|
|
|
|
ctx.save_for_backward(qkv[:, :, 0], qkv[:, :, 1], qkv[:, :, 2], out, softmax_lse, rng_state, attn_bias, alibi_slopes) |
|
|
|
ctx.dropout_p = dropout_p |
|
ctx.softmax_scale = softmax_scale |
|
ctx.causal = causal |
|
ctx.window_size_left = window_size_left |
|
ctx.window_size_right = window_size_right |
|
ctx.deterministic = deterministic |
|
ctx.bias_requires_grad = True if attn_bias is not None and return_ds else False |
|
ctx.seqlen_k_orig = qkv.shape[1] |
|
|
|
return out if not return_softmax else (out, softmax_lse, S_dmask) |
|
|
|
@staticmethod |
|
def backward(ctx, dout, *args): |
|
q, k, v, out, softmax_lse, rng_state, attn_bias, alibi_slopes = ctx.saved_tensors |
|
|
|
dq, dk, dv, ds, _ = torch.ops.fa2.bwd( |
|
dout, |
|
q, |
|
k, |
|
v, |
|
out, |
|
softmax_lse, |
|
None, |
|
None, |
|
None, |
|
alibi_slopes, |
|
ctx.dropout_p, |
|
ctx.softmax_scale, |
|
ctx.causal, |
|
ctx.window_size_left, |
|
ctx.window_size_right, |
|
ctx.deterministic, |
|
attn_bias, |
|
ctx.bias_requires_grad, |
|
None, |
|
ctx.seqlen_k_orig, |
|
None, |
|
rng_state |
|
) |
|
dqkv = torch.stack([dq, dk, dv], dim=2) |
|
return dqkv, None, None, None, None, None, None, None, ds, None, None |
|
|
|
class FlashAttnKVPackedFunc(torch.autograd.Function): |
|
@staticmethod |
|
def forward( |
|
ctx, |
|
q, |
|
kv, |
|
dropout_p, |
|
softmax_scale, |
|
causal, |
|
window_size_left, |
|
window_size_right, |
|
alibi_slopes, |
|
deterministic, |
|
attn_bias, |
|
return_softmax, |
|
return_ds |
|
): |
|
if softmax_scale is None: |
|
softmax_scale = q.shape[-1] ** (-0.5) |
|
|
|
out, q_padded, k_padded, v_padded, out_padded, attn_bias_padded, softmax_lse, S_dmask, rng_state = torch.ops.fa2.fwd( |
|
q, |
|
kv[:, :, 0], |
|
kv[:, :, 1], |
|
None, |
|
alibi_slopes, |
|
dropout_p, |
|
softmax_scale, |
|
causal, |
|
window_size_left, |
|
window_size_right, |
|
attn_bias, |
|
return_softmax and dropout_p > 0, |
|
None |
|
) |
|
|
|
|
|
|
|
|
|
ctx.save_for_backward(q, kv[:, :, 0], kv[:, :, 1], out, softmax_lse, rng_state, attn_bias, alibi_slopes) |
|
|
|
ctx.dropout_p = dropout_p |
|
ctx.softmax_scale = softmax_scale |
|
ctx.causal = causal |
|
ctx.window_size_left = window_size_left |
|
ctx.window_size_right = window_size_right |
|
ctx.deterministic = deterministic |
|
ctx.bias_requires_grad = True if attn_bias is not None and return_ds else False |
|
ctx.seqlen_k_orig = kv.shape[1] |
|
return out if not return_softmax else (out, softmax_lse, S_dmask) |
|
|
|
@staticmethod |
|
def backward(ctx, dout, *args): |
|
q, k, v, out, softmax_lse, rng_state, attn_bias, alibi_slopes = ctx.saved_tensors |
|
|
|
dq, dk, dv, ds, _ = torch.ops.fa2.bwd( |
|
dout, |
|
q, |
|
k, |
|
v, |
|
out, |
|
softmax_lse, |
|
None, |
|
None, |
|
None, |
|
alibi_slopes, |
|
ctx.dropout_p, |
|
ctx.softmax_scale, |
|
ctx.causal, |
|
ctx.window_size_left, |
|
ctx.window_size_right, |
|
ctx.deterministic, |
|
attn_bias, |
|
ctx.bias_requires_grad, |
|
None, |
|
ctx.seqlen_k_orig, |
|
None, |
|
rng_state |
|
) |
|
dkv = torch.stack([dk, dv], dim=2) |
|
|
|
return dq, dkv, None, None, None, None, None, None, None, ds, None, None |
|
|
|
class FlashAttnFunc(torch.autograd.Function): |
|
@staticmethod |
|
def forward( |
|
ctx, |
|
q, |
|
k, |
|
v, |
|
dropout_p, |
|
softmax_scale, |
|
causal, |
|
window_size_left, |
|
window_size_right, |
|
alibi_slopes, |
|
deterministic, |
|
attn_bias, |
|
return_softmax, |
|
return_ds |
|
): |
|
|
|
batch_size, seqlen_q = q.shape[:2] |
|
seqlen_k = k.shape[1] |
|
|
|
if softmax_scale is None: |
|
softmax_scale = q.shape[-1] ** (-0.5) |
|
|
|
if attn_bias is not None: |
|
attn_bias = attn_bias.to(q.dtype) |
|
|
|
out, q_padded, k_padded, v_padded, out_padded, attn_bias_padded, softmax_lse, S_dmask, rng_state = torch.ops.fa2.fwd( |
|
q, |
|
k, |
|
v, |
|
None, |
|
alibi_slopes, |
|
dropout_p, |
|
softmax_scale, |
|
causal, |
|
window_size_left, |
|
window_size_right, |
|
attn_bias, |
|
return_softmax and dropout_p > 0, |
|
None |
|
) |
|
|
|
|
|
|
|
|
|
ctx.save_for_backward(q, k, v, out, softmax_lse, rng_state, attn_bias, alibi_slopes) |
|
|
|
|
|
ctx.dropout_p = dropout_p |
|
ctx.softmax_scale = softmax_scale |
|
ctx.causal = causal |
|
ctx.window_size_left = window_size_left |
|
ctx.window_size_right = window_size_right |
|
ctx.deterministic = deterministic |
|
ctx.bias_requires_grad = True if attn_bias is not None and return_ds else False |
|
ctx.seqlen_k_orig = k.shape[1] |
|
|
|
return out if not return_softmax else (out, softmax_lse, S_dmask) |
|
|
|
@staticmethod |
|
def backward(ctx, dout, *args): |
|
q, k, v, out, softmax_lse, rng_state, attn_bias, alibi_slopes = ctx.saved_tensors |
|
|
|
dout = dout.contiguous() |
|
dq, dk, dv, ds, _ = torch.ops.fa2.bwd( |
|
dout, |
|
q, |
|
k, |
|
v, |
|
out, |
|
softmax_lse, |
|
None, |
|
None, |
|
None, |
|
alibi_slopes, |
|
ctx.dropout_p, |
|
ctx.softmax_scale, |
|
ctx.causal, |
|
ctx.window_size_left, |
|
ctx.window_size_right, |
|
ctx.deterministic, |
|
attn_bias, |
|
ctx.bias_requires_grad, |
|
None, |
|
ctx.seqlen_k_orig, |
|
None, |
|
rng_state |
|
) |
|
|
|
return dq, dk, dv, None, None, None, None, None, None, None, ds, None, None |
|
|
|
|
|
def flash_attn_qkvpacked_func( |
|
qkv, |
|
dropout_p=0.0, |
|
softmax_scale=None, |
|
causal=False, |
|
window_size_left=-1, |
|
window_size_right=-1, |
|
alibi_slopes=None, |
|
deterministic=False, |
|
attn_bias=None, |
|
return_attn_probs=False, |
|
return_ds=False |
|
): |
|
"""dropout_p should be set to 0.0 during evaluation |
|
If Q, K, V are already stacked into 1 tensor, this function will be faster than |
|
calling flash_attn_func on Q, K, V since the backward pass avoids explicit concatenation |
|
of the gradients of Q, K, V. |
|
For multi-query and grouped-query attention (MQA/GQA), please see |
|
flash_attn_kvpacked_func and flash_attn_func. |
|
|
|
If window_size != (-1, -1), implements sliding window local attention. Query at position i |
|
will only attend to keys between [i - window_size[0], i + window_size[1]] inclusive. |
|
|
|
Arguments: |
|
qkv: (batch_size, seqlen, 3, nheads, headdim) |
|
dropout_p: float. Dropout probability. |
|
softmax_scale: float. The scaling of QK^T before applying softmax. |
|
Default to 1 / sqrt(headdim). |
|
causal: bool. Whether to apply causal attention mask (e.g., for auto-regressive modeling). |
|
window_size: (left, right). If not (-1, -1), implements sliding window local attention. |
|
alibi_slopes: (nheads,) or (batch_size, nheads), fp32. A bias of (-alibi_slope * |i - j|) is added to |
|
the attention score of query i and key j. |
|
deterministic: bool. Whether to use the deterministic implementation of the backward pass, |
|
which is slightly slower and uses more memory. The forward pass is always deterministic. |
|
return_attn_probs: bool. Whether to return the attention probabilities. This option is for |
|
testing only. The returned probabilities are not guaranteed to be correct |
|
(they might not have the right scaling). |
|
Return: |
|
out: (batch_size, seqlen, nheads, headdim). |
|
softmax_lse [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen). The |
|
logsumexp of each row of the matrix QK^T * scaling (e.g., log of the softmax |
|
normalization factor). |
|
S_dmask [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen, seqlen). |
|
The output of softmax (possibly with different scaling). It also encodes the dropout |
|
pattern (negative means that location was dropped, nonnegative means it was kept). |
|
""" |
|
return FlashAttnQKVPackedFunc.apply( |
|
qkv, |
|
dropout_p, |
|
softmax_scale, |
|
causal, |
|
window_size_left, |
|
window_size_right, |
|
alibi_slopes, |
|
deterministic, |
|
attn_bias, |
|
return_attn_probs, |
|
return_ds |
|
) |
|
|
|
|
|
def flash_attn_kvpacked_func( |
|
q, |
|
kv, |
|
dropout_p=0.0, |
|
softmax_scale=None, |
|
causal=False, |
|
window_size_left=-1, |
|
window_size_right=-1, |
|
alibi_slopes=None, |
|
deterministic=False, |
|
attn_bias=None, |
|
return_attn_probs=False, |
|
return_ds=False |
|
): |
|
"""dropout_p should be set to 0.0 during evaluation |
|
If K, V are already stacked into 1 tensor, this function will be faster than |
|
calling flash_attn_func on Q, K, V since the backward pass avoids explicit concatenation |
|
of the gradients of K, V. |
|
Supports multi-query and grouped-query attention (MQA/GQA) by passing in KV with fewer heads |
|
than Q. Note that the number of heads in Q must be divisible by the number of heads in KV. |
|
For example, if Q has 6 heads and K, V have 2 heads, head 0, 1, 2 of Q will attention to head |
|
0 of K, V, and head 3, 4, 5 of Q will attention to head 1 of K, V. |
|
|
|
If causal=True, the causal mask is aligned to the bottom right corner of the attention matrix. |
|
For example, if seqlen_q = 2 and seqlen_k = 5, the causal mask (1 = keep, 0 = masked out) is: |
|
1 1 1 1 0 |
|
1 1 1 1 1 |
|
If seqlen_q = 5 and seqlen_k = 2, the causal mask is: |
|
0 0 |
|
0 0 |
|
0 0 |
|
1 0 |
|
1 1 |
|
If the row of the mask is all zero, the output will be zero. |
|
|
|
If window_size != (-1, -1), implements sliding window local attention. Query at position i |
|
will only attend to keys between |
|
[i + seqlen_k - seqlen_q - window_size[0], i + seqlen_k - seqlen_q + window_size[1]] inclusive. |
|
|
|
Arguments: |
|
q: (batch_size, seqlen, nheads, headdim) |
|
kv: (batch_size, seqlen, 2, nheads_k, headdim) |
|
dropout_p: float. Dropout probability. |
|
softmax_scale: float. The scaling of QK^T before applying softmax. |
|
Default to 1 / sqrt(headdim). |
|
causal: bool. Whether to apply causal attention mask (e.g., for auto-regressive modeling). |
|
window_size: (left, right). If not (-1, -1), implements sliding window local attention. |
|
alibi_slopes: (nheads,) or (batch_size, nheads), fp32. A bias of |
|
(-alibi_slope * |i + seqlen_k - seqlen_q - j|) |
|
is added to the attention score of query i and key j. |
|
deterministic: bool. Whether to use the deterministic implementation of the backward pass, |
|
which is slightly slower and uses more memory. The forward pass is always deterministic. |
|
return_attn_probs: bool. Whether to return the attention probabilities. This option is for |
|
testing only. The returned probabilities are not guaranteed to be correct |
|
(they might not have the right scaling). |
|
Return: |
|
out: (batch_size, seqlen, nheads, headdim). |
|
softmax_lse [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen). The |
|
logsumexp of each row of the matrix QK^T * scaling (e.g., log of the softmax |
|
normalization factor). |
|
S_dmask [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen, seqlen). |
|
The output of softmax (possibly with different scaling). It also encodes the dropout |
|
pattern (negative means that location was dropped, nonnegative means it was kept). |
|
""" |
|
return FlashAttnKVPackedFunc.apply( |
|
q, |
|
kv, |
|
dropout_p, |
|
softmax_scale, |
|
causal, |
|
window_size_left, |
|
window_size_right, |
|
alibi_slopes, |
|
deterministic, |
|
attn_bias, |
|
return_attn_probs, |
|
return_ds |
|
) |
|
|
|
|
|
def flash_attn_func( |
|
q, |
|
k, |
|
v, |
|
dropout_p=0.0, |
|
softmax_scale=None, |
|
causal=False, |
|
window_size_left=-1, |
|
window_size_right=-1, |
|
alibi_slopes=None, |
|
deterministic=False, |
|
attn_bias=None, |
|
return_attn_probs=False, |
|
return_ds=False |
|
): |
|
"""dropout_p should be set to 0.0 during evaluation |
|
Supports multi-query and grouped-query attention (MQA/GQA) by passing in KV with fewer heads |
|
than Q. Note that the number of heads in Q must be divisible by the number of heads in KV. |
|
For example, if Q has 6 heads and K, V have 2 heads, head 0, 1, 2 of Q will attention to head |
|
0 of K, V, and head 3, 4, 5 of Q will attention to head 1 of K, V. |
|
|
|
If causal=True, the causal mask is aligned to the bottom right corner of the attention matrix. |
|
For example, if seqlen_q = 2 and seqlen_k = 5, the causal mask (1 = keep, 0 = masked out) is: |
|
1 1 1 1 0 |
|
1 1 1 1 1 |
|
If seqlen_q = 5 and seqlen_k = 2, the causal mask is: |
|
0 0 |
|
0 0 |
|
0 0 |
|
1 0 |
|
1 1 |
|
If the row of the mask is all zero, the output will be zero. |
|
|
|
If window_size != (-1, -1), implements sliding window local attention. Query at position i |
|
will only attend to keys between |
|
[i + seqlen_k - seqlen_q - window_size[0], i + seqlen_k - seqlen_q + window_size[1]] inclusive. |
|
|
|
Arguments: |
|
q: (batch_size, seqlen, nheads, headdim) |
|
k: (batch_size, seqlen, nheads_k, headdim) |
|
v: (batch_size, seqlen, nheads_k, headdim) |
|
dropout_p: float. Dropout probability. |
|
softmax_scale: float. The scaling of QK^T before applying softmax. |
|
Default to 1 / sqrt(headdim). |
|
causal: bool. Whether to apply causal attention mask (e.g., for auto-regressive modeling). |
|
window_size: (left, right). If not (-1, -1), implements sliding window local attention. |
|
alibi_slopes: (nheads,) or (batch_size, nheads), fp32. A bias of |
|
(-alibi_slope * |i + seqlen_k - seqlen_q - j|) |
|
is added to the attention score of query i and key j. |
|
deterministic: bool. Whether to use the deterministic implementation of the backward pass, |
|
which is slightly slower and uses more memory. The forward pass is always deterministic. |
|
return_attn_probs: bool. Whether to return the attention probabilities. This option is for |
|
testing only. The returned probabilities are not guaranteed to be correct |
|
(they might not have the right scaling). |
|
Return: |
|
out: (batch_size, seqlen, nheads, headdim). |
|
softmax_lse [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen). The |
|
logsumexp of each row of the matrix QK^T * scaling (e.g., log of the softmax |
|
normalization factor). |
|
S_dmask [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen, seqlen). |
|
The output of softmax (possibly with different scaling). It also encodes the dropout |
|
pattern (negative means that location was dropped, nonnegative means it was kept). |
|
""" |
|
return FlashAttnFunc.apply( |
|
q, |
|
k, |
|
v, |
|
dropout_p, |
|
softmax_scale, |
|
causal, |
|
window_size_left, |
|
window_size_right, |
|
alibi_slopes, |
|
deterministic, |
|
attn_bias, |
|
return_attn_probs, |
|
return_ds, |
|
) |
|
|