File size: 5,036 Bytes
1772f26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
# Copyright 2022 Google LLC

# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at

#     https://www.apache.org/licenses/LICENSE-2.0

# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
r"""Beam pipeline that generates UCF101 `interp_test` triplet TFRecords.

UCF101 interpolation evaluation dataset consists of 379 triplets, with the
middle frame being the golden intermediate. The dataset is available here:
https://people.cs.umass.edu/~hzjiang/projects/superslomo/UCF101_results.zip.

Input to the script is the root folder that contains the unzipped
`UCF101_results` folder.

Output TFRecord is a tf.train.Example proto of each image triplet.
The feature_map takes the form:
  feature_map {
      'frame_0/encoded':
          tf.io.FixedLenFeature((), tf.string, default_value=''),
      'frame_0/format':
          tf.io.FixedLenFeature((), tf.string, default_value='jpg'),
      'frame_0/height':
          tf.io.FixedLenFeature((), tf.int64, default_value=0),
      'frame_0/width':
          tf.io.FixedLenFeature((), tf.int64, default_value=0),
      'frame_1/encoded':
          tf.io.FixedLenFeature((), tf.string, default_value=''),
      'frame_1/format':
          tf.io.FixedLenFeature((), tf.string, default_value='jpg'),
      'frame_1/height':
          tf.io.FixedLenFeature((), tf.int64, default_value=0),
      'frame_1/width':
          tf.io.FixedLenFeature((), tf.int64, default_value=0),
      'frame_2/encoded':
          tf.io.FixedLenFeature((), tf.string, default_value=''),
      'frame_2/format':
          tf.io.FixedLenFeature((), tf.string, default_value='jpg'),
      'frame_2/height':
          tf.io.FixedLenFeature((), tf.int64, default_value=0),
      'frame_2/width':
          tf.io.FixedLenFeature((), tf.int64, default_value=0),
      'path':
          tf.io.FixedLenFeature((), tf.string, default_value=''),
  }

Usage example:
  python3 -m frame_interpolation.datasets.create_ucf101_tfrecord \
    --input_dir=<root folder of UCF101_results> \
    --output_tfrecord_filepath=<output tfrecord filepath>
"""

import os

from . import util
from absl import app
from absl import flags
from absl import logging
import apache_beam as beam
import tensorflow as tf

_INPUT_DIR = flags.DEFINE_string(
    'input_dir',
    default='/root/path/to/UCF101_results/ucf101_interp_ours',
    help='Path to the root directory of the `UCF101_results` of the UCF101 '
    'interpolation evaluation data. '
    'We expect the data to have been downloaded and unzipped. \n'
    'Folder structures:\n'
    '| raw_UCF101_results/\n'
    '|  ucf101_interp_ours/\n'
    '|  |  1/\n'
    '|  |  |  frame_00.png\n'
    '|  |  |  frame_01_gt.png\n'
    '|  |  |  frame_01_ours.png\n'
    '|  |  |  frame_02.png\n'
    '|  |  2/\n'
    '|  |  |  frame_00.png\n'
    '|  |  |  frame_01_gt.png\n'
    '|  |  |  frame_01_ours.png\n'
    '|  |  |  frame_02.png\n'
    '|  |  ...\n'
    '|  ucf101_sepconv/\n'
    '|  ...\n')

_OUTPUT_TFRECORD_FILEPATH = flags.DEFINE_string(
    'output_tfrecord_filepath',
    default=None,
    required=True,
    help='Filepath to the output TFRecord file.')

_NUM_SHARDS = flags.DEFINE_integer('num_shards',
    default=2,
    help='Number of shards used for the output.')

# Image key -> basename for frame interpolator: start / middle / end frames.
_INTERPOLATOR_IMAGES_MAP = {
    'frame_0': 'frame_00.png',
    'frame_1': 'frame_01_gt.png',
    'frame_2': 'frame_02.png',
}


def main(unused_argv):
  """Creates and runs a Beam pipeline to write frame triplets as a TFRecord."""
  # Collect the list of folder paths containing the input and golden frames.
  triplets_list = tf.io.gfile.listdir(_INPUT_DIR.value)

  triplet_dicts = []
  for triplet in triplets_list:
    triplet_dicts.append({
        image_key: os.path.join(_INPUT_DIR.value, triplet, image_basename)
        for image_key, image_basename in _INTERPOLATOR_IMAGES_MAP.items()
    })

  p = beam.Pipeline('DirectRunner')
  (p | 'ReadInputTripletDicts' >> beam.Create(triplet_dicts)  # pylint: disable=expression-not-assigned
   | 'GenerateSingleExample' >> beam.ParDo(
       util.ExampleGenerator(_INTERPOLATOR_IMAGES_MAP))
   | 'WriteToTFRecord' >> beam.io.tfrecordio.WriteToTFRecord(
       file_path_prefix=_OUTPUT_TFRECORD_FILEPATH.value,
       num_shards=_NUM_SHARDS.value,
       coder=beam.coders.BytesCoder()))
  result = p.run()
  result.wait_until_finish()

  logging.info('Succeeded in creating the output TFRecord file: \'%s@%s\'.',
    _OUTPUT_TFRECORD_FILEPATH.value, str(_NUM_SHARDS.value))

if __name__ == '__main__':
  app.run(main)