|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
r"""Beam pipeline that generates Xiph triplet TFRecords. |
|
|
|
Xiph is a frame sequence dataset commonly used to assess video compression. See |
|
here: https://media.xiph.org/video/derf/ |
|
|
|
The SoftSplat paper selected eight 4K clips with the most amount of motion and |
|
extracted the first 100 frames from each clip. Each frame is then either resized |
|
from 4K to 2K, or a 2K center crop from them is performed before interpolating |
|
the even frames from the odd frames. These datasets are denoted as `Xiph-2K` |
|
and `Xiph-4K` respectively. For more information see the project page: |
|
https://github.com/sniklaus/softmax-splatting |
|
|
|
Input is the root folder that contains the 800 frames of the eight clips. Set |
|
center_crop_factor=2 and scale_factor=1 to generate `Xiph-4K`,and scale_factor=2 |
|
, center_crop_factor=1 to generate `Xiph-2K`. The scripts defaults to `Xiph-2K`. |
|
|
|
Output TFRecord is a tf.train.Example proto of each image triplet. |
|
The feature_map takes the form: |
|
feature_map { |
|
'frame_0/encoded': |
|
tf.io.FixedLenFeature((), tf.string, default_value=''), |
|
'frame_0/format': |
|
tf.io.FixedLenFeature((), tf.string, default_value='jpg'), |
|
'frame_0/height': |
|
tf.io.FixedLenFeature((), tf.int64, default_value=0), |
|
'frame_0/width': |
|
tf.io.FixedLenFeature((), tf.int64, default_value=0), |
|
'frame_1/encoded': |
|
tf.io.FixedLenFeature((), tf.string, default_value=''), |
|
'frame_1/format': |
|
tf.io.FixedLenFeature((), tf.string, default_value='jpg'), |
|
'frame_1/height': |
|
tf.io.FixedLenFeature((), tf.int64, default_value=0), |
|
'frame_1/width': |
|
tf.io.FixedLenFeature((), tf.int64, default_value=0), |
|
'frame_2/encoded': |
|
tf.io.FixedLenFeature((), tf.string, default_value=''), |
|
'frame_2/format': |
|
tf.io.FixedLenFeature((), tf.string, default_value='jpg'), |
|
'frame_2/height': |
|
tf.io.FixedLenFeature((), tf.int64, default_value=0), |
|
'frame_2/width': |
|
tf.io.FixedLenFeature((), tf.int64, default_value=0), |
|
'path': |
|
tf.io.FixedLenFeature((), tf.string, default_value=''), |
|
} |
|
|
|
Usage example: |
|
python3 -m frame_interpolation.datasets.create_xiph_tfrecord \ |
|
--input_dir=<root folder of xiph dataset> \ |
|
--scale_factor=<scale factor for image resizing, default=2> \ |
|
--center_crop_factor=<center cropping factor, default=1> \ |
|
--output_tfrecord_filepath=<output tfrecord filepath> |
|
""" |
|
import os |
|
|
|
from . import util |
|
from absl import app |
|
from absl import flags |
|
from absl import logging |
|
import apache_beam as beam |
|
import tensorflow as tf |
|
|
|
_INPUT_DIR = flags.DEFINE_string( |
|
'input_dir', |
|
default='/root/path/to/selected/xiph/clips', |
|
help='Path to the root directory of the `Xiph` interpolation evaluation ' |
|
'data. We expect the data to have been downloaded and unzipped.') |
|
_CENTER_CROP_FACTOR = flags.DEFINE_integer( |
|
'center_crop_factor', |
|
default=1, |
|
help='Factor to center crop image. If set to 2, an image of the same ' |
|
'resolution as the inputs but half the size is created.') |
|
_SCALE_FACTOR = flags.DEFINE_integer( |
|
'scale_factor', |
|
default=2, |
|
help='Factor to downsample frames.') |
|
_NUM_CLIPS = flags.DEFINE_integer( |
|
'num_clips', default=8, help='Number of clips.') |
|
_NUM_FRAMES = flags.DEFINE_integer( |
|
'num_frames', default=100, help='Number of frames per clip.') |
|
_OUTPUT_TFRECORD_FILEPATH = flags.DEFINE_string( |
|
'output_tfrecord_filepath', |
|
default=None, |
|
required=True, |
|
help='Filepath to the output TFRecord file.') |
|
_NUM_SHARDS = flags.DEFINE_integer('num_shards', |
|
default=2, |
|
help='Number of shards used for the output.') |
|
|
|
|
|
_INTERPOLATOR_IMAGES_MAP = { |
|
'frame_0': -1, |
|
'frame_1': 0, |
|
'frame_2': 1, |
|
} |
|
|
|
|
|
def main(unused_argv): |
|
"""Creates and runs a Beam pipeline to write frame triplets as a TFRecord.""" |
|
|
|
frames_list = sorted(tf.io.gfile.listdir(_INPUT_DIR.value)) |
|
|
|
|
|
triplets_dict = [] |
|
for clip_index in range(_NUM_CLIPS.value): |
|
for frame_index in range(1, _NUM_FRAMES.value - 1, 2): |
|
index = clip_index * _NUM_FRAMES.value + frame_index |
|
triplet_dict = { |
|
image_key: os.path.join(_INPUT_DIR.value, |
|
frames_list[index + image_offset]) |
|
for image_key, image_offset in _INTERPOLATOR_IMAGES_MAP.items() |
|
} |
|
triplets_dict.append(triplet_dict) |
|
|
|
p = beam.Pipeline('DirectRunner') |
|
(p | 'ReadInputTripletDicts' >> beam.Create(triplets_dict) |
|
| 'GenerateSingleExample' >> beam.ParDo( |
|
util.ExampleGenerator(_INTERPOLATOR_IMAGES_MAP, _SCALE_FACTOR.value, |
|
_CENTER_CROP_FACTOR.value)) |
|
| 'WriteToTFRecord' >> beam.io.tfrecordio.WriteToTFRecord( |
|
file_path_prefix=_OUTPUT_TFRECORD_FILEPATH.value, |
|
num_shards=_NUM_SHARDS.value, |
|
coder=beam.coders.BytesCoder())) |
|
result = p.run() |
|
result.wait_until_finish() |
|
|
|
logging.info('Succeeded in creating the output TFRecord file: \'%s@%s\'.', |
|
_OUTPUT_TFRECORD_FILEPATH.value, str(_NUM_SHARDS.value)) |
|
|
|
if __name__ == '__main__': |
|
app.run(main) |
|
|