init test
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- given-ppo-LunarLander-rc.zip +3 -0
- given-ppo-LunarLander-rc/_stable_baselines3_version +1 -0
- given-ppo-LunarLander-rc/data +94 -0
- given-ppo-LunarLander-rc/policy.optimizer.pth +3 -0
- given-ppo-LunarLander-rc/policy.pth +3 -0
- given-ppo-LunarLander-rc/pytorch_variables.pth +3 -0
- given-ppo-LunarLander-rc/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 198.92 +/- 36.84
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f86ad614440>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f86ad6144d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f86ad614560>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f86ad6145f0>", "_build": "<function ActorCriticPolicy._build at 0x7f86ad614680>", "forward": "<function ActorCriticPolicy.forward at 0x7f86ad614710>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f86ad6147a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f86ad614830>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f86ad6148c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f86ad614950>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f86ad6149e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f86ad65cb40>"}, "verbose": 0, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 5013504, "_total_timesteps": 5000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651683885.033466, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANNtAL4KBSe7Ct45u4DaqbgocYY8YgxwOgAAgD8AAIA/pgnNvYWkCT+xAjY9q/pdvsHP/Lwgep87AAAAAAAAAACAXug9UnPRPDZ0qj2VuoW+TFZSPVhTXT0AAAAAAAAAAPMF0L1j6wE/pgdaPOGMf76KV7G8jaT8PAAAAAAAAAAAmnFmOwGoPT6MUbU9wDNyvgKoEzu6gaQ8AAAAAAAAAACip6a+8PWsPuFEIT7Vlzq+SxG4O2PEED0AAAAAAAAAAM18irr2eDm61P0xPBmWmrakcKU7yZ2QtQAAgD8AAIA/M9KHPVKQs7nUoUC7MgXXtv0+3DrT2mQ6AACAPwAAgD/NNLM9QKehPhgs+jzek0W+SwXWPCGzKL0AAAAAAAAAANocMj6PCWY78IDauKYvX7a25gc9TEQCOAAAgD8AAIA/8+XjPXZDOT92hTK9whiFvrPODb3y/C09AAAAAAAAAACNpcO9ewihumo0WDz17nA2ZrDkOtCzXTUAAIA/AAAAADOVDDxc62660xvVuMLf3rPp4Sg3qOz5NwAAgD8AAIA/QJXuPVxje7oi6Go6m5P8tlr3ILp4TIm5AACAPwAAgD+zub49SE+JuiJqGLwaDiI2O2LOurHYk7UAAIA/AAAAAIDTzD2uebi66wbKOgZauTXzTMM47nfmuQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0027007999999999477, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI+n5qvPQJbUCUhpRSlIwBbJRNlQGMAXSUR0C4uSVcyFfzdX2UKGgGaAloD0MIpu7KLhj0bkCUhpRSlGgVTd0BaBZHQLi7KOdGy5Z1fZQoaAZoCWgPQwi4zOmymDBgQJSGlFKUaBVN6ANoFkdAuL0TB+F10XV9lChoBmgJaA9DCKH2WztR8lhAlIaUUpRoFU3oA2gWR0C4vahekYXPdX2UKGgGaAloD0MIDW0ANiDeYkCUhpRSlGgVTegDaBZHQLi/RtPHktF1fZQoaAZoCWgPQwiSlzWxwNfsv5SGlFKUaBVNNAFoFkdAuMBaQ7tAs3V9lChoBmgJaA9DCFaA7zZvVVtAlIaUUpRoFU3oA2gWR0C4wPmN3np0dX2UKGgGaAloD0MIj3HFxVFRYkCUhpRSlGgVTegDaBZHQLjBd3Qla8p1fZQoaAZoCWgPQwjGpL+XQlBvQJSGlFKUaBVNIwFoFkdAuMHsj1PFenV9lChoBmgJaA9DCIi85erH8VxAlIaUUpRoFU3oA2gWR0C4whRBmf5DdX2UKGgGaAloD0MIyvs4miOQYUCUhpRSlGgVTegDaBZHQLjCK/hVENR1fZQoaAZoCWgPQwjNsbyrHkg1QJSGlFKUaBVNDQFoFkdAuML1Zq20A3V9lChoBmgJaA9DCMkgdxGmsVlAlIaUUpRoFU3oA2gWR0C4wzqraM72dX2UKGgGaAloD0MI98lRgCh7Y0CUhpRSlGgVTegDaBZHQLjEg2WIGhV1fZQoaAZoCWgPQwiFBmLZzCNhQJSGlFKUaBVN6ANoFkdAuMZCQ5myxHV9lChoBmgJaA9DCHqmlxhLsW5AlIaUUpRoFU0sAWgWR0C4xm+lGgBcdX2UKGgGaAloD0MIWP58W7DIQUCUhpRSlGgVS+doFkdAuMcbUiILxHV9lChoBmgJaA9DCFRW0/VEpGtAlIaUUpRoFU05AWgWR0C4xyCNsFdLdX2UKGgGaAloD0MIajF4mHanYkCUhpRSlGgVTegDaBZHQLjHUFRHf/F1fZQoaAZoCWgPQwjhmdAksUlhQJSGlFKUaBVN6ANoFkdAuMiWIInjQ3V9lChoBmgJaA9DCNXo1QClY11AlIaUUpRoFU3oA2gWR0C4yaLGecx1dX2UKGgGaAloD0MIEalpF9PEX0CUhpRSlGgVTegDaBZHQLjKPiOearp1fZQoaAZoCWgPQwgVyOws+r5sQJSGlFKUaBVNIQFoFkdAuM0awTufEnV9lChoBmgJaA9DCLuYZrrXhW9AlIaUUpRoFU0nAWgWR0C4zUAxzq8ldX2UKGgGaAloD0MI/FBpxMxLYUCUhpRSlGgVTegDaBZHQLjSrJEYwZh1fZQoaAZoCWgPQwjfpGlQNDdcQJSGlFKUaBVN6ANoFkdAuNRSwJPZZnV9lChoBmgJaA9DCJIE4QoooVtAlIaUUpRoFU3oA2gWR0C41W+dbxEwdX2UKGgGaAloD0MIjh8qjZg0XUCUhpRSlGgVTegDaBZHQLjXGYSQHRl1fZQoaAZoCWgPQwiJ1LSL6cNgQJSGlFKUaBVN6ANoFkdAuNdGtT1kD3V9lChoBmgJaA9DCPdbO1GSBmNAlIaUUpRoFU3oA2gWR0C412M5fdAPdX2UKGgGaAloD0MIVRUaiGUCWUCUhpRSlGgVTegDaBZHQLjYugF5fMR1fZQoaAZoCWgPQwit26D22wpuQJSGlFKUaBVNTAFoFkdAuNpCTt9hJHV9lChoBmgJaA9DCNOFWP0ReGBAlIaUUpRoFU3oA2gWR0C42mQ+lj3FdX2UKGgGaAloD0MI5XtGIjRyYUCUhpRSlGgVTegDaBZHQLjcWzSkTHt1fZQoaAZoCWgPQwjbbRea62VfQJSGlFKUaBVN6ANoFkdAuNyLqdH2AXV9lChoBmgJaA9DCE7TZwdcgl9AlIaUUpRoFU3oA2gWR0C43W32qT8pdX2UKGgGaAloD0MIcTlegegfW0CUhpRSlGgVTegDaBZHQLje1SQYDT11fZQoaAZoCWgPQwgrweJwZnNgQJSGlFKUaBVN6ANoFkdAuN/zXTVlPXV9lChoBmgJaA9DCJI/GHjuxFtAlIaUUpRoFU3oA2gWR0C44JLi2lVMdX2UKGgGaAloD0MIzqlkAKj+PUCUhpRSlGgVTRMBaBZHQLjhtZlnRLN1fZQoaAZoCWgPQwi+T1WhgWAlwJSGlFKUaBVL/2gWR0C44lgSeyzHdX2UKGgGaAloD0MI5SZqae5kYECUhpRSlGgVTegDaBZHQLjiw/FR51N1fZQoaAZoCWgPQwhHPq946lBjQJSGlFKUaBVN6ANoFkdAuOLg/+sHSnV9lChoBmgJaA9DCBWpMLYQjCHAlIaUUpRoFU0HAWgWR0C45Jq2WpqAdX2UKGgGaAloD0MIr7DgfsBxW0CUhpRSlGgVTegDaBZHQLjoUo24usd1fZQoaAZoCWgPQwhnKsQjcTBiQJSGlFKUaBVN6ANoFkdAuOlPUmUnonV9lChoBmgJaA9DCH12wHVFd2BAlIaUUpRoFU3oA2gWR0C46tsvIwM6dX2UKGgGaAloD0MI2o8UkWFGY0CUhpRSlGgVTegDaBZHQLjrAuhK15V1fZQoaAZoCWgPQwiTOgFNBAViQJSGlFKUaBVN6ANoFkdAuOsa2H+IdnV9lChoBmgJaA9DCDzbozdcImFAlIaUUpRoFU3oA2gWR0C47DVEqlP8dX2UKGgGaAloD0MIG0ZB8HiEYECUhpRSlGgVTegDaBZHQLjtYGOdXkp1fZQoaAZoCWgPQwjqzD0kfDRgQJSGlFKUaBVN6ANoFkdAuO17HHWBjHV9lChoBmgJaA9DCBe7fVaZMm9AlIaUUpRoFU1iAWgWR0C47uCFK02MdX2UKGgGaAloD0MIeuBjsOIUY0CUhpRSlGgVTegDaBZHQLjvNiRGMGZ1fZQoaAZoCWgPQwjhlSTPdX9wQJSGlFKUaBVNFQFoFkdAuO+VDXvphXV9lChoBmgJaA9DCAnekEaFvmpAlIaUUpRoFU12AWgWR0C47/xshxHYdX2UKGgGaAloD0MIu3uA7svVQMCUhpRSlGgVTR8BaBZHQLjw9c7Qswt1fZQoaAZoCWgPQwj5npEIjVVhQJSGlFKUaBVN6ANoFkdAuPEXKDCgsnV9lChoBmgJaA9DCBSWeEDZC2RAlIaUUpRoFU3oA2gWR0C48o6m0mdBdX2UKGgGaAloD0MI8RDGT2MIbUCUhpRSlGgVTVIBaBZHQLjzFICEHt51fZQoaAZoCWgPQwjmd5rM+J5kQJSGlFKUaBVN6ANoFkdAuPOWdTYNAnV9lChoBmgJaA9DCERtG0bBEmFAlIaUUpRoFU3oA2gWR0C49Cu7HyVfdX2UKGgGaAloD0MI4bN1cLBrZECUhpRSlGgVTegDaBZHQLj0h+TvAoJ1fZQoaAZoCWgPQwjTF0LO+5dhQJSGlFKUaBVN6ANoFkdAuPSjtXxOL3V9lChoBmgJaA9DCPORlPQwbltAlIaUUpRoFU3oA2gWR0C49so4p+c6dX2UKGgGaAloD0MIcodNZOaiHcCUhpRSlGgVS8JoFkdAuPc0BZIQOHV9lChoBmgJaA9DCAmp29lXfj5AlIaUUpRoFU0YAWgWR0C4+fjjvNNbdX2UKGgGaAloD0MIVS+/02T/YECUhpRSlGgVTegDaBZHQLj9af5k9U11fZQoaAZoCWgPQwhIbHcP0M1bQJSGlFKUaBVN6ANoFkdAuP2HkLhJiHV9lChoBmgJaA9DCHLFxVG5pl1AlIaUUpRoFU3oA2gWR0C5ALCDVYp2dX2UKGgGaAloD0MIEMmQY2tCa0CUhpRSlGgVTc8BaBZHQLkA2RkmQbN1fZQoaAZoCWgPQwjpSC7/od5iQJSGlFKUaBVN6ANoFkdAuQKuLAHminV9lChoBmgJaA9DCCz0wTK20mBAlIaUUpRoFU3oA2gWR0C5AyIzabnYdX2UKGgGaAloD0MItAOuK2b9X0CUhpRSlGgVTegDaBZHQLkDm14Pf9B1fZQoaAZoCWgPQwhMjdDPVGFkQJSGlFKUaBVN6ANoFkdAuQQdq1w5vXV9lChoBmgJaA9DCOj2ksZoJlpAlIaUUpRoFU3oA2gWR0C5BVLsSkCWdX2UKGgGaAloD0MIKlWi7K19YECUhpRSlGgVTegDaBZHQLkFedszl911fZQoaAZoCWgPQwjVPbK5aq5wQJSGlFKUaBVNfwFoFkdAuQXrfyf+THV9lChoBmgJaA9DCNtq1hlfD2FAlIaUUpRoFU3oA2gWR0C5Bw8Dr7fpdX2UKGgGaAloD0MIKelhaHX5YECUhpRSlGgVTegDaBZHQLkHo4/NZ/11fZQoaAZoCWgPQwjGpL+XQhtrQJSGlFKUaBVNXgFoFkdAuQfbVpblinV9lChoBmgJaA9DCIUn9PqTuGJAlIaUUpRoFU3oA2gWR0C5CL+EVWS2dX2UKGgGaAloD0MIVwT/W0lzYUCUhpRSlGgVTegDaBZHQLkJSfRNRFZ1fZQoaAZoCWgPQwhr0m2JXMtgQJSGlFKUaBVN6ANoFkdAuQvHMeOn23V9lChoBmgJaA9DCJpBfGBHJWFAlIaUUpRoFU3oA2gWR0C5DvgblzU7dX2UKGgGaAloD0MIk4sxsI4LXECUhpRSlGgVTegDaBZHQLkSon0Cih51fZQoaAZoCWgPQwi+LViqCyFjQJSGlFKUaBVN6ANoFkdAuRYep5u63HV9lChoBmgJaA9DCHYb1H5rY2FAlIaUUpRoFU3oA2gWR0C5GGz3M6ikdX2UKGgGaAloD0MIIeo+ACllYUCUhpRSlGgVTegDaBZHQLkY8ktmL+B1fZQoaAZoCWgPQwgArfnxl6NiQJSGlFKUaBVN6ANoFkdAuRl49mpVCHV9lChoBmgJaA9DCAK6L2c2pGBAlIaUUpRoFU3oA2gWR0C5GgbFKkEcdX2UKGgGaAloD0MItCJqos9CWkCUhpRSlGgVTegDaBZHQLkbUVD8cdZ1fZQoaAZoCWgPQwjxSpLn+shcQJSGlFKUaBVN6ANoFkdAuRt4dDIBBHV9lChoBmgJaA9DCHnNqzor0WBAlIaUUpRoFU3oA2gWR0C5G+7bHp8ndX2UKGgGaAloD0MIT3Yzox/TYUCUhpRSlGgVTegDaBZHQLkdEXFtKqZ1fZQoaAZoCWgPQwidSZuqewxiQJSGlFKUaBVN6ANoFkdAuR2cFmnO0XV9lChoBmgJaA9DCJvG9lpQ2WBAlIaUUpRoFU3oA2gWR0C5HdWcFyJbdX2UKGgGaAloD0MIQWZn0TtV8b+UhpRSlGgVS/toFkdAuR6jC4z7/HV9lChoBmgJaA9DCLg6AOIu1GVAlIaUUpRoFU3oA2gWR0C5HrGgezUrdX2UKGgGaAloD0MIW9HmOLfEXkCUhpRSlGgVTegDaBZHQLkfKTYukDZ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 628, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 2048, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
given-ppo-LunarLander-rc.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bee1dc23752f85e52075fd5e0591efb70f5f9888279a3250e012cb0fc457d629
|
3 |
+
size 144048
|
given-ppo-LunarLander-rc/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
given-ppo-LunarLander-rc/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f86ad614440>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f86ad6144d0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f86ad614560>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f86ad6145f0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f86ad614680>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f86ad614710>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f86ad6147a0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f86ad614830>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f86ad6148c0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f86ad614950>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f86ad6149e0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f86ad65cb40>"
|
20 |
+
},
|
21 |
+
"verbose": 0,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 5013504,
|
46 |
+
"_total_timesteps": 5000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1651683885.033466,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANNtAL4KBSe7Ct45u4DaqbgocYY8YgxwOgAAgD8AAIA/pgnNvYWkCT+xAjY9q/pdvsHP/Lwgep87AAAAAAAAAACAXug9UnPRPDZ0qj2VuoW+TFZSPVhTXT0AAAAAAAAAAPMF0L1j6wE/pgdaPOGMf76KV7G8jaT8PAAAAAAAAAAAmnFmOwGoPT6MUbU9wDNyvgKoEzu6gaQ8AAAAAAAAAACip6a+8PWsPuFEIT7Vlzq+SxG4O2PEED0AAAAAAAAAAM18irr2eDm61P0xPBmWmrakcKU7yZ2QtQAAgD8AAIA/M9KHPVKQs7nUoUC7MgXXtv0+3DrT2mQ6AACAPwAAgD/NNLM9QKehPhgs+jzek0W+SwXWPCGzKL0AAAAAAAAAANocMj6PCWY78IDauKYvX7a25gc9TEQCOAAAgD8AAIA/8+XjPXZDOT92hTK9whiFvrPODb3y/C09AAAAAAAAAACNpcO9ewihumo0WDz17nA2ZrDkOtCzXTUAAIA/AAAAADOVDDxc62660xvVuMLf3rPp4Sg3qOz5NwAAgD8AAIA/QJXuPVxje7oi6Go6m5P8tlr3ILp4TIm5AACAPwAAgD+zub49SE+JuiJqGLwaDiI2O2LOurHYk7UAAIA/AAAAAIDTzD2uebi66wbKOgZauTXzTMM47nfmuQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.0027007999999999477,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI+n5qvPQJbUCUhpRSlIwBbJRNlQGMAXSUR0C4uSVcyFfzdX2UKGgGaAloD0MIpu7KLhj0bkCUhpRSlGgVTd0BaBZHQLi7KOdGy5Z1fZQoaAZoCWgPQwi4zOmymDBgQJSGlFKUaBVN6ANoFkdAuL0TB+F10XV9lChoBmgJaA9DCKH2WztR8lhAlIaUUpRoFU3oA2gWR0C4vahekYXPdX2UKGgGaAloD0MIDW0ANiDeYkCUhpRSlGgVTegDaBZHQLi/RtPHktF1fZQoaAZoCWgPQwiSlzWxwNfsv5SGlFKUaBVNNAFoFkdAuMBaQ7tAs3V9lChoBmgJaA9DCFaA7zZvVVtAlIaUUpRoFU3oA2gWR0C4wPmN3np0dX2UKGgGaAloD0MIj3HFxVFRYkCUhpRSlGgVTegDaBZHQLjBd3Qla8p1fZQoaAZoCWgPQwjGpL+XQlBvQJSGlFKUaBVNIwFoFkdAuMHsj1PFenV9lChoBmgJaA9DCIi85erH8VxAlIaUUpRoFU3oA2gWR0C4whRBmf5DdX2UKGgGaAloD0MIyvs4miOQYUCUhpRSlGgVTegDaBZHQLjCK/hVENR1fZQoaAZoCWgPQwjNsbyrHkg1QJSGlFKUaBVNDQFoFkdAuML1Zq20A3V9lChoBmgJaA9DCMkgdxGmsVlAlIaUUpRoFU3oA2gWR0C4wzqraM72dX2UKGgGaAloD0MI98lRgCh7Y0CUhpRSlGgVTegDaBZHQLjEg2WIGhV1fZQoaAZoCWgPQwiFBmLZzCNhQJSGlFKUaBVN6ANoFkdAuMZCQ5myxHV9lChoBmgJaA9DCHqmlxhLsW5AlIaUUpRoFU0sAWgWR0C4xm+lGgBcdX2UKGgGaAloD0MIWP58W7DIQUCUhpRSlGgVS+doFkdAuMcbUiILxHV9lChoBmgJaA9DCFRW0/VEpGtAlIaUUpRoFU05AWgWR0C4xyCNsFdLdX2UKGgGaAloD0MIajF4mHanYkCUhpRSlGgVTegDaBZHQLjHUFRHf/F1fZQoaAZoCWgPQwjhmdAksUlhQJSGlFKUaBVN6ANoFkdAuMiWIInjQ3V9lChoBmgJaA9DCNXo1QClY11AlIaUUpRoFU3oA2gWR0C4yaLGecx1dX2UKGgGaAloD0MIEalpF9PEX0CUhpRSlGgVTegDaBZHQLjKPiOearp1fZQoaAZoCWgPQwgVyOws+r5sQJSGlFKUaBVNIQFoFkdAuM0awTufEnV9lChoBmgJaA9DCLuYZrrXhW9AlIaUUpRoFU0nAWgWR0C4zUAxzq8ldX2UKGgGaAloD0MI/FBpxMxLYUCUhpRSlGgVTegDaBZHQLjSrJEYwZh1fZQoaAZoCWgPQwjfpGlQNDdcQJSGlFKUaBVN6ANoFkdAuNRSwJPZZnV9lChoBmgJaA9DCJIE4QoooVtAlIaUUpRoFU3oA2gWR0C41W+dbxEwdX2UKGgGaAloD0MIjh8qjZg0XUCUhpRSlGgVTegDaBZHQLjXGYSQHRl1fZQoaAZoCWgPQwiJ1LSL6cNgQJSGlFKUaBVN6ANoFkdAuNdGtT1kD3V9lChoBmgJaA9DCPdbO1GSBmNAlIaUUpRoFU3oA2gWR0C412M5fdAPdX2UKGgGaAloD0MIVRUaiGUCWUCUhpRSlGgVTegDaBZHQLjYugF5fMR1fZQoaAZoCWgPQwit26D22wpuQJSGlFKUaBVNTAFoFkdAuNpCTt9hJHV9lChoBmgJaA9DCNOFWP0ReGBAlIaUUpRoFU3oA2gWR0C42mQ+lj3FdX2UKGgGaAloD0MI5XtGIjRyYUCUhpRSlGgVTegDaBZHQLjcWzSkTHt1fZQoaAZoCWgPQwjbbRea62VfQJSGlFKUaBVN6ANoFkdAuNyLqdH2AXV9lChoBmgJaA9DCE7TZwdcgl9AlIaUUpRoFU3oA2gWR0C43W32qT8pdX2UKGgGaAloD0MIcTlegegfW0CUhpRSlGgVTegDaBZHQLje1SQYDT11fZQoaAZoCWgPQwgrweJwZnNgQJSGlFKUaBVN6ANoFkdAuN/zXTVlPXV9lChoBmgJaA9DCJI/GHjuxFtAlIaUUpRoFU3oA2gWR0C44JLi2lVMdX2UKGgGaAloD0MIzqlkAKj+PUCUhpRSlGgVTRMBaBZHQLjhtZlnRLN1fZQoaAZoCWgPQwi+T1WhgWAlwJSGlFKUaBVL/2gWR0C44lgSeyzHdX2UKGgGaAloD0MI5SZqae5kYECUhpRSlGgVTegDaBZHQLjiw/FR51N1fZQoaAZoCWgPQwhHPq946lBjQJSGlFKUaBVN6ANoFkdAuOLg/+sHSnV9lChoBmgJaA9DCBWpMLYQjCHAlIaUUpRoFU0HAWgWR0C45Jq2WpqAdX2UKGgGaAloD0MIr7DgfsBxW0CUhpRSlGgVTegDaBZHQLjoUo24usd1fZQoaAZoCWgPQwhnKsQjcTBiQJSGlFKUaBVN6ANoFkdAuOlPUmUnonV9lChoBmgJaA9DCH12wHVFd2BAlIaUUpRoFU3oA2gWR0C46tsvIwM6dX2UKGgGaAloD0MI2o8UkWFGY0CUhpRSlGgVTegDaBZHQLjrAuhK15V1fZQoaAZoCWgPQwiTOgFNBAViQJSGlFKUaBVN6ANoFkdAuOsa2H+IdnV9lChoBmgJaA9DCDzbozdcImFAlIaUUpRoFU3oA2gWR0C47DVEqlP8dX2UKGgGaAloD0MIG0ZB8HiEYECUhpRSlGgVTegDaBZHQLjtYGOdXkp1fZQoaAZoCWgPQwjqzD0kfDRgQJSGlFKUaBVN6ANoFkdAuO17HHWBjHV9lChoBmgJaA9DCBe7fVaZMm9AlIaUUpRoFU1iAWgWR0C47uCFK02MdX2UKGgGaAloD0MIeuBjsOIUY0CUhpRSlGgVTegDaBZHQLjvNiRGMGZ1fZQoaAZoCWgPQwjhlSTPdX9wQJSGlFKUaBVNFQFoFkdAuO+VDXvphXV9lChoBmgJaA9DCAnekEaFvmpAlIaUUpRoFU12AWgWR0C47/xshxHYdX2UKGgGaAloD0MIu3uA7svVQMCUhpRSlGgVTR8BaBZHQLjw9c7Qswt1fZQoaAZoCWgPQwj5npEIjVVhQJSGlFKUaBVN6ANoFkdAuPEXKDCgsnV9lChoBmgJaA9DCBSWeEDZC2RAlIaUUpRoFU3oA2gWR0C48o6m0mdBdX2UKGgGaAloD0MI8RDGT2MIbUCUhpRSlGgVTVIBaBZHQLjzFICEHt51fZQoaAZoCWgPQwjmd5rM+J5kQJSGlFKUaBVN6ANoFkdAuPOWdTYNAnV9lChoBmgJaA9DCERtG0bBEmFAlIaUUpRoFU3oA2gWR0C49Cu7HyVfdX2UKGgGaAloD0MI4bN1cLBrZECUhpRSlGgVTegDaBZHQLj0h+TvAoJ1fZQoaAZoCWgPQwjTF0LO+5dhQJSGlFKUaBVN6ANoFkdAuPSjtXxOL3V9lChoBmgJaA9DCPORlPQwbltAlIaUUpRoFU3oA2gWR0C49so4p+c6dX2UKGgGaAloD0MIcodNZOaiHcCUhpRSlGgVS8JoFkdAuPc0BZIQOHV9lChoBmgJaA9DCAmp29lXfj5AlIaUUpRoFU0YAWgWR0C4+fjjvNNbdX2UKGgGaAloD0MIVS+/02T/YECUhpRSlGgVTegDaBZHQLj9af5k9U11fZQoaAZoCWgPQwhIbHcP0M1bQJSGlFKUaBVN6ANoFkdAuP2HkLhJiHV9lChoBmgJaA9DCHLFxVG5pl1AlIaUUpRoFU3oA2gWR0C5ALCDVYp2dX2UKGgGaAloD0MIEMmQY2tCa0CUhpRSlGgVTc8BaBZHQLkA2RkmQbN1fZQoaAZoCWgPQwjpSC7/od5iQJSGlFKUaBVN6ANoFkdAuQKuLAHminV9lChoBmgJaA9DCCz0wTK20mBAlIaUUpRoFU3oA2gWR0C5AyIzabnYdX2UKGgGaAloD0MItAOuK2b9X0CUhpRSlGgVTegDaBZHQLkDm14Pf9B1fZQoaAZoCWgPQwhMjdDPVGFkQJSGlFKUaBVN6ANoFkdAuQQdq1w5vXV9lChoBmgJaA9DCOj2ksZoJlpAlIaUUpRoFU3oA2gWR0C5BVLsSkCWdX2UKGgGaAloD0MIKlWi7K19YECUhpRSlGgVTegDaBZHQLkFedszl911fZQoaAZoCWgPQwjVPbK5aq5wQJSGlFKUaBVNfwFoFkdAuQXrfyf+THV9lChoBmgJaA9DCNtq1hlfD2FAlIaUUpRoFU3oA2gWR0C5Bw8Dr7fpdX2UKGgGaAloD0MIKelhaHX5YECUhpRSlGgVTegDaBZHQLkHo4/NZ/11fZQoaAZoCWgPQwjGpL+XQhtrQJSGlFKUaBVNXgFoFkdAuQfbVpblinV9lChoBmgJaA9DCIUn9PqTuGJAlIaUUpRoFU3oA2gWR0C5CL+EVWS2dX2UKGgGaAloD0MIVwT/W0lzYUCUhpRSlGgVTegDaBZHQLkJSfRNRFZ1fZQoaAZoCWgPQwhr0m2JXMtgQJSGlFKUaBVN6ANoFkdAuQvHMeOn23V9lChoBmgJaA9DCJpBfGBHJWFAlIaUUpRoFU3oA2gWR0C5DvgblzU7dX2UKGgGaAloD0MIk4sxsI4LXECUhpRSlGgVTegDaBZHQLkSon0Cih51fZQoaAZoCWgPQwi+LViqCyFjQJSGlFKUaBVN6ANoFkdAuRYep5u63HV9lChoBmgJaA9DCHYb1H5rY2FAlIaUUpRoFU3oA2gWR0C5GGz3M6ikdX2UKGgGaAloD0MIIeo+ACllYUCUhpRSlGgVTegDaBZHQLkY8ktmL+B1fZQoaAZoCWgPQwgArfnxl6NiQJSGlFKUaBVN6ANoFkdAuRl49mpVCHV9lChoBmgJaA9DCAK6L2c2pGBAlIaUUpRoFU3oA2gWR0C5GgbFKkEcdX2UKGgGaAloD0MItCJqos9CWkCUhpRSlGgVTegDaBZHQLkbUVD8cdZ1fZQoaAZoCWgPQwjxSpLn+shcQJSGlFKUaBVN6ANoFkdAuRt4dDIBBHV9lChoBmgJaA9DCHnNqzor0WBAlIaUUpRoFU3oA2gWR0C5G+7bHp8ndX2UKGgGaAloD0MIT3Yzox/TYUCUhpRSlGgVTegDaBZHQLkdEXFtKqZ1fZQoaAZoCWgPQwidSZuqewxiQJSGlFKUaBVN6ANoFkdAuR2cFmnO0XV9lChoBmgJaA9DCJvG9lpQ2WBAlIaUUpRoFU3oA2gWR0C5HdWcFyJbdX2UKGgGaAloD0MIQWZn0TtV8b+UhpRSlGgVS/toFkdAuR6jC4z7/HV9lChoBmgJaA9DCLg6AOIu1GVAlIaUUpRoFU3oA2gWR0C5HrGgezUrdX2UKGgGaAloD0MIW9HmOLfEXkCUhpRSlGgVTegDaBZHQLkfKTYukDZ1ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 628,
|
79 |
+
"n_steps": 2048,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 2048,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
given-ppo-LunarLander-rc/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:40356792d5a821f276b3be1ba143f4fb08f377f399337dbc9c629d766b97af05
|
3 |
+
size 84829
|
given-ppo-LunarLander-rc/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:08ab946ab163b6b6aa567355f9f514a27fdd6a87b759225a55605887861d2ae2
|
3 |
+
size 43201
|
given-ppo-LunarLander-rc/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
given-ppo-LunarLander-rc/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a41bb79b52662e831a41c974dfa9a8cd0b33c770461788048444cf462e4569cc
|
3 |
+
size 176042
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 198.92415891549754, "std_reward": 36.83847804890558, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-04T18:44:05.233168"}
|