File size: 14,307 Bytes
db26c81 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 |
import torch
import json
import math
from collections import OrderedDict
from .const import *
from .utils import to_list
from .norm import Norm1D, Norm2D
from .variable import AttributeVariable, WorkerTaskSequence
class PyEnv(object):
def __init__(self, problem, batch_size, sample_num, nn_args):
super(PyEnv, self).__init__()
self._problem = problem
self._batch_size = batch_size
self._sample_num = sample_num
self._debug = -1
self._NW = problem.worker_num
self._NWW = problem.worker_num * 2
self._NT = problem.task_num
self._NWWT = self._NWW + self._NT
self._feats_dict = nn_args['feature_dict']
self._vars_dim = nn_args['variable_dim']
self._vars_dict = {}
self._vars = [var(problem, batch_size, sample_num) for var in problem.variables]
for variable in self._vars:
save_variable_version(variable)
assert variable.name not in self._vars_dict, \
"duplicated variable, name: {}".format(variable.name)
self._vars_dict[variable.name] = variable
self._constraint = problem.constraint()
self._objective = problem.objective()
self._worker_index = torch.full((self._batch_size,), -1,
dtype=torch.int64,
device=problem.device)
self._batch_index = torch.arange(self._batch_size,
dtype=torch.int64,
device=problem.device)
self._problem_index = torch.div(self._batch_index, sample_num, rounding_mode='trunc') # self._batch_index // sample_num
self._feasible = torch.ones(self._batch_size,
dtype=torch.bool,
device=problem.device)
self._cost = torch.zeros(self._batch_size, self._NT * 2,
dtype=torch.float32,
device=problem.device)
self._mask = torch.zeros(self._batch_size,
self._NWWT + 1,
dtype=torch.bool,
device=problem.device)
self._worker_task_sequence = torch.full((self._batch_size, self._NT * 2, 3), -1,
dtype=torch.int64,
device=problem.device)
self._step = 0
self.register_variables(self._constraint)
self._finished = self._constraint.finished()
if hasattr(self._constraint, 'mask_worker_start'):
self.register_variables(self._constraint)
mask_start = self._constraint.mask_worker_start()
else:
mask_start = False
self._mask[:, :self._NW] = mask_start
self._mask[:, self._NW:] = True
if self._debug >= 0:
print("\n$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$")
print("new env")
print("$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$\n")
def time(self):
return self._step
def step(self, chosen):
with torch.no_grad():
self._do_step(chosen)
def _do_step(self, chosen):
if self._debug >= 0:
print("----------------------------------------------------------------------")
feasible = self._feasible & ~self._mask[self._problem_index, chosen]
print("feasible={}".format(feasible[self._debug].tolist()))
is_start = (chosen >= 0) & (chosen < self._NW)
if torch.any(is_start):
b_index = self._batch_index[is_start]
p_index = self._problem_index[is_start]
w_index = chosen[is_start]
self.step_worker_start(b_index, p_index, w_index)
is_end = (chosen >= self._NW) & (chosen < self._NWW)
if torch.any(is_end):
b_index = self._batch_index[is_end]
p_index = self._problem_index[is_end]
w_index = chosen[is_end] - self._NW
self.step_worker_end(b_index, p_index, w_index)
is_task = (chosen >= self._NWW) & (chosen < self._NWWT)
if torch.any(is_task):
b_index = self._batch_index[is_task]
p_index = self._problem_index[is_task]
t_index = chosen[is_task] - self._NWW
step_task_b_index = b_index
self.step_task(b_index, p_index, t_index)
else:
step_task_b_index = None
is_finish = chosen == self._NWWT
if torch.any(is_finish):
b_index = self._batch_index[is_finish]
self._worker_task_sequence[b_index, self._step, 0] = GRL_FINISH
self._worker_task_sequence[b_index, self._step, 1] = 0
self._worker_task_sequence[b_index, self._step, 2] = -1
self.update_mask(step_task_b_index)
for var in self._vars:
check_variable_version(var)
if self._debug >= 0:
print("worker_task_sequence[{}]={}".format(self._step,
self._worker_task_sequence[self._debug, self._step].tolist()))
for var in self._vars:
if var.value is None:
print("{}={}".format(var.name, None))
elif isinstance(var, AttributeVariable):
print("{}={}".format(var.name, to_list(var.value)))
else:
print("{}={}".format(var.name, to_list(var.value[self._debug])))
self._step += 1
if self._step >= self._cost.size(1):
cost = torch.zeros(self._batch_size, self._step + self._NT,
dtype=torch.float32,
device=chosen.device)
cost[:, 0:self._step] = self._cost;
self._cost = cost
worker_task_sequence = torch.full((self._batch_size, self._step + self._NT, 3), -1,
dtype=torch.int64,
device=chosen.device)
worker_task_sequence[:, 0:self._step, :] = self._worker_task_sequence
self._worker_task_sequence = worker_task_sequence
def step_worker_start(self, b_index, p_index, w_index):
self._worker_task_sequence[b_index, self._step, 0] = GRL_WORKER_START
self._worker_task_sequence[b_index, self._step, 1] = w_index
self._worker_task_sequence[b_index, self._step, 2] = -1
for var in self._vars:
if hasattr(var, 'step_worker_start'):
var.step_worker_start(b_index, p_index, w_index)
save_variable_version(var)
if hasattr(self._objective, 'step_worker_start'):
self.register_variables(self._objective, b_index)
self.update_cost(self._objective.step_worker_start(), b_index)
self._worker_index[b_index] = w_index
self._mask[b_index, :self._NWW] = True
self._mask[b_index, self._NWW:] = False
def step_worker_end(self, b_index, p_index, w_index):
self._worker_task_sequence[b_index, self._step, 0] = GRL_WORKER_END
self._worker_task_sequence[b_index, self._step, 1] = w_index
self._worker_task_sequence[b_index, self._step, 2] = -1;
for var in self._vars:
if hasattr(var, 'step_worker_end'):
var.step_worker_end(b_index, p_index, w_index)
save_variable_version(var)
if hasattr(self._objective, 'step_worker_end'):
self.register_variables(self._objective, b_index)
self.update_cost(self._objective.step_worker_end(), b_index)
self._worker_index[b_index] = -1
self.register_variables(self._constraint, b_index)
self._finished[b_index] |= self._constraint.finished()
if hasattr(self._constraint, 'mask_worker_start'):
mask_start = self._constraint.mask_worker_start()
else:
mask_start = False
self._mask[b_index, :self._NW] = mask_start
self._mask[b_index, self._NW:] = True
def step_task(self, b_index, p_index, t_index):
self._worker_task_sequence[b_index, self._step, 0] = GRL_TASK
self._worker_task_sequence[b_index, self._step, 1] = t_index
for var in self._vars:
if not hasattr(var, 'step_task'):
continue
elif var.step_task.__code__.co_argcount == 4:
var.step_task(b_index, p_index, t_index)
else:
var.step_task(b_index, p_index, t_index, None)
save_variable_version(var)
if hasattr(self._constraint, 'do_task'):
self.register_variables(self._constraint, b_index)
done = self._constraint.do_task()
self._worker_task_sequence[b_index, self._step, 2] = done.long()
for var in self._vars:
if not hasattr(var, 'step_task'):
continue
elif var.step_task.__code__.co_argcount == 4:
pass
else:
check_variable_version(var)
var.step_task(b_index, p_index, t_index, done)
save_variable_version(var)
else:
done = None
if hasattr(self._objective, 'step_task'):
self.register_variables(self._objective, b_index)
self.update_cost(self._objective.step_task(), b_index)
if hasattr(self._constraint, 'mask_worker_end'):
self.register_variables(self._constraint, b_index)
mask_end = self._constraint.mask_worker_end()
else:
mask_end = False
w_index = self._NW + self._worker_index[b_index]
self._mask[b_index, w_index] = mask_end
self._mask[b_index, self._NWW:] = False
return done
def update_cost(self, cost, b_index=None):
if isinstance(cost, tuple):
cost, feasible = cost
if b_index is None:
self._feasible &= feasible
else:
self._feasible[b_index] &= feasible
if isinstance(cost, torch.Tensor):
cost = cost.float()
else:
assert type(cost) in (int, float), "unexpected cost's type: {}".format(type(cost))
if b_index is None:
self._cost[:, self._step] = cost
else:
self._cost[b_index, self._step] = cost
def update_mask(self, step_task_b_index):
self._mask |= self._finished[:, None]
self._mask[:, -1] = ~self._finished
self.register_variables(self._constraint)
self._mask[:, self._NWW:self._NWWT] |= self._constraint.mask_task()
if step_task_b_index is not None:
b_index = step_task_b_index
w_index = self._NW + self._worker_index[b_index]
task_mask = self._mask[b_index, self._NWW:self._NWWT]
self._mask[b_index, w_index] &= ~torch.all(task_mask, 1)
def batch_size():
return self._batch_size
def sample_num():
return self._sample_num
def mask(self):
return self._mask.clone()
def cost(self):
return self._cost[:, 0:self._step]
def feasible(self):
return self._feasible
def worker_task_sequence(self):
return self._worker_task_sequence[:, 0:self._step]
def var(self, name):
return self._vars_dict[name].value
def register_variables(self, obj, b_index=None, finished=False):
for var in self._vars:
if var.value is None or b_index is None \
or isinstance(var, AttributeVariable):
value = var.value
else:
value = var.value[b_index]
obj.__dict__[var.name] = value
if not hasattr(var, 'ext_values'):
continue
for k, v in var.ext_values.items():
k = var.name + '_' + k
obj.__dict__[k] = v[b_index]
def finished(self):
return self._finished
def all_finished(self):
return torch.all(self.finished())
def finalize(self):
self._worker_task_sequence[:, self._step, 0] = GRL_FINISH
self._worker_task_sequence[:, self._step, 1] = 0
self._worker_task_sequence[:, self._step, 2] = -1
for var in self._vars:
if hasattr(var, 'step_finish'):
var.step_finish(self.worker_task_sequence())
if hasattr(self._objective, 'step_finish'):
self.register_variables(self._objective, finished=True)
self.update_cost(self._objective.step_finish())
self._step += 1
def make_feat(self):
with torch.no_grad():
return self.do_make_feat()
def do_make_feat(self):
if not self._vars_dim:
return None
feature_list = []
for k, dim in self._vars_dim.items():
f = self._feats_dict[k]
var = self._vars_dict[f.name]
v = var.make_feat()
if v.dim() == 2:
v = v[:, :, None]
assert dim == v.size(-1), \
"feature dim error, feature: {}, expected: {}, actual: {}".format(k, dim, v.size(-1))
feature_list.append(v.float())
v = torch.cat(feature_list, 2)
u = v.new_zeros(v.size(0), self._NWW, v.size(2))
f = v.new_zeros(v.size(0), 1, v.size(2))
v = torch.cat([u, v, f], 1).permute(0, 2, 1)
v[self._mask[:, None, :].expand(v.size())] = 0
norm = v.new_ones(self._mask.size())
norm[self._mask] = 0
norm = norm.sum(1) + 1e-10
norm = norm[:, None, None]
avg = v.sum(-1, keepdim=True) / norm
v = v - avg
std = v.norm(dim=-1, keepdim=True) / norm + 1e-10
v = v / std
return v.contiguous()
def save_variable_version(var):
if isinstance(var.value, torch.Tensor):
var.__version__ = var.value._version
def check_variable_version(var):
if isinstance(var.value, torch.Tensor):
assert var.__version__ == var.value._version, \
"variable's value is modified, name: {}".format(var.name)
|