File size: 7,117 Bytes
db26c81 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
import json
from greedrl import Problem, Solver
from greedrl.feature import *
from greedrl.variable import *
features = [local_feature('task_area'),
local_feature('task_roadway'),
local_feature('task_area_group'),
sparse_local_feature('task_item_id', 'task_item_num'),
sparse_local_feature('task_item_owner_id', 'task_item_num'),
variable_feature('worker_task_item'),
variable_feature('worker_used_roadway'),
variable_feature('worker_used_area')]
variables = [task_demand_now('task_demand_now', feature='task_demand'),
task_demand_now('task_demand_this', feature='task_demand', only_this=True),
feature_variable('task_item_id'),
feature_variable('task_item_num'),
feature_variable('task_item_owner_id'),
feature_variable('task_area'),
feature_variable('task_area_group'),
feature_variable('task_load'),
feature_variable('task_group'),
worker_variable('worker_load_limit'),
worker_variable('worker_area_limit'),
worker_variable('worker_area_group_limit'),
worker_task_item('worker_task_item', item_id='task_item_id', item_num='task_item_num'),
worker_task_item('worker_task_item_owner', item_id='task_item_owner_id', item_num='task_item_num'),
worker_used_resource('worker_used_load', task_require='task_load'),
worker_used_resource('worker_used_area', task_require='task_area'),
worker_used_resource('worker_used_roadway', task_require='task_roadway'),
worker_used_resource('worker_used_area_group', task_require='task_area_group')]
class Constraint:
def do_task(self):
return self.task_demand_this
def mask_worker_end(self):
return self.worker_used_load < self.worker_load_limit
def mask_task(self):
# 已经完成的任务
mask = self.task_demand_now <= 0
# mask |= task_group_priority(self.task_group, self.task_out_stock_time, mask)
NT = self.task_item_id.size(1)
worker_task_item = self.worker_task_item[:, None, :]
worker_task_item = worker_task_item.expand(-1, NT, -1)
task_item_in_worker = worker_task_item.gather(2, self.task_item_id.long())
task_item_in_worker = (task_item_in_worker > 0) & (self.task_item_num > 0)
worker_task_item_owner = self.worker_task_item_owner[:, None, :]
worker_task_item_owner = worker_task_item_owner.expand(-1, NT, -1)
task_item_owner_in_worker = worker_task_item_owner.gather(2, self.task_item_owner_id.long())
task_item_owner_in_worker = (task_item_owner_in_worker > 0) & (self.task_item_num > 0)
# 同一个sku,不同货主,不能在一个拣选单
mask |= torch.any(task_item_in_worker & ~task_item_owner_in_worker, 2)
worker_load_limit = self.worker_load_limit - self.worker_used_load
mask |= (self.task_load > worker_load_limit[:, None])
task_area = self.task_area + self.worker_used_area[:, None, :]
task_area_num = task_area.clamp(0, 1).sum(2, dtype=torch.int32)
mask |= (task_area_num > self.worker_area_limit[:, None])
tak_area_group = self.task_area_group + self.worker_used_area_group[:, None, :]
tak_area_group_num = tak_area_group.clamp(0, 1).sum(2, dtype=torch.int32)
mask |= (tak_area_group_num > self.worker_area_group_limit[:, None])
return mask
def finished(self):
return torch.all(self.task_demand_now <= 0, 1)
class Objective:
def step_worker_end(self):
area_num = self.worker_used_area.clamp(0, 1).sum(1)
roadway_num = self.worker_used_roadway.clamp(0, 1).sum(1)
item_num = self.worker_task_item.clamp(0, 1).sum(1)
penalty = (self.worker_load_limit - self.worker_used_load) * 10
return area_num * 100 + roadway_num * 10 + item_num + penalty
def make_problem_from_json(data):
if isinstance(data, str):
data = json.loads(data)
problem = Problem()
problem.id = data["id"]
if 'uuid' in data:
problem.uuid = data["uuid"]
problem.task_item_id = torch.tensor(data["task_item_id"], dtype=torch.int32)
problem.task_item_owner_id = torch.tensor(data["task_item_owner_id"], dtype=torch.int32)
problem.task_item_num = torch.tensor(data["task_item_num"], dtype=torch.int32)
problem.task_area = torch.tensor(data["task_area"], dtype=torch.int32)
problem.task_roadway = torch.tensor(data["task_roadway"], dtype=torch.int32)
problem.task_out_stock_time = torch.tensor(data["task_out_stock_time"], dtype=torch.int32)
problem.task_area_group = torch.tensor(data["task_area_group"], dtype=torch.int32)
NT = problem.task_item_id.size(0)
problem.task_load = torch.ones(NT, dtype=torch.int32)
problem.task_group = torch.zeros(NT, dtype=torch.int32)
problem.task_demand = torch.ones(NT, dtype=torch.int32)
problem.worker_load_limit = torch.tensor(data["worker_load_limit"], dtype=torch.int32)
problem.worker_area_limit = torch.tensor(data["worker_area_limit"], dtype=torch.int32)
problem.worker_area_group_limit = torch.tensor(data["worker_area_group_limit"], dtype=torch.int32)
problem.features = features
problem.variables = variables
problem.constraint = Constraint
problem.objective = Objective
return problem
def make_problem(batch_count, batch_size=1, task_count=100):
assert batch_size == 1
NT = task_count
problem_list = []
for i in range(batch_count):
problem = Problem()
problem.id = i
device = Solver().device
p = torch.ones(NT, 1000, dtype=torch.float32, device=device)
problem.task_item_id = torch.multinomial(p, 10).to(torch.int32).cpu()
problem.task_item_owner_id = torch.multinomial(p, 10).to(torch.int32).cpu()
problem.task_item_num = torch.randint(0, 5, (NT, 10), dtype=torch.int32)
problem.task_area = torch.randint(0, 5, (NT, 10), dtype=torch.int32).clamp(0, 1)
problem.task_roadway = torch.randint(0, 5, (NT, 200), dtype=torch.int32).clamp(0, 1)
problem.task_area_group = torch.randint(0, 5, (NT, 10), dtype=torch.int32).clamp(0, 1)
problem.task_load = torch.ones(NT, dtype=torch.int32)
problem.task_group = torch.zeros(NT, dtype=torch.int32)
problem.task_demand = torch.ones(NT, dtype=torch.int32)
problem.worker_load_limit = torch.tensor([20], dtype=torch.int32)
problem.worker_area_limit = torch.tensor([10], dtype=torch.int32)
problem.worker_area_group_limit = torch.tensor([10], dtype=torch.int32)
problem.features = features
problem.variables = variables
problem.constraint = Constraint
problem.objective = Objective
problem_list.append(problem)
return problem_list
if __name__ == '__main__':
import sys
import os.path as osp
sys.path.append(osp.join(osp.dirname(__file__), '../'))
import runner
runner.run(make_problem)
|