File size: 7,117 Bytes
db26c81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import json

from greedrl import Problem, Solver
from greedrl.feature import *
from greedrl.variable import *

features = [local_feature('task_area'),
            local_feature('task_roadway'),
            local_feature('task_area_group'),
            sparse_local_feature('task_item_id', 'task_item_num'),
            sparse_local_feature('task_item_owner_id', 'task_item_num'),
            variable_feature('worker_task_item'),
            variable_feature('worker_used_roadway'),
            variable_feature('worker_used_area')]

variables = [task_demand_now('task_demand_now', feature='task_demand'),
             task_demand_now('task_demand_this', feature='task_demand', only_this=True),
             feature_variable('task_item_id'),
             feature_variable('task_item_num'),
             feature_variable('task_item_owner_id'),
             feature_variable('task_area'),
             feature_variable('task_area_group'),
             feature_variable('task_load'),
             feature_variable('task_group'),
             worker_variable('worker_load_limit'),
             worker_variable('worker_area_limit'),
             worker_variable('worker_area_group_limit'),
             worker_task_item('worker_task_item', item_id='task_item_id', item_num='task_item_num'),
             worker_task_item('worker_task_item_owner', item_id='task_item_owner_id', item_num='task_item_num'),
             worker_used_resource('worker_used_load', task_require='task_load'),
             worker_used_resource('worker_used_area', task_require='task_area'),
             worker_used_resource('worker_used_roadway', task_require='task_roadway'),
             worker_used_resource('worker_used_area_group', task_require='task_area_group')]


class Constraint:

    def do_task(self):
        return self.task_demand_this

    def mask_worker_end(self):
        return self.worker_used_load < self.worker_load_limit

    def mask_task(self):
        # 已经完成的任务
        mask = self.task_demand_now <= 0
        # mask |= task_group_priority(self.task_group, self.task_out_stock_time, mask)

        NT = self.task_item_id.size(1)
        worker_task_item = self.worker_task_item[:, None, :]
        worker_task_item = worker_task_item.expand(-1, NT, -1)
        task_item_in_worker = worker_task_item.gather(2, self.task_item_id.long())
        task_item_in_worker = (task_item_in_worker > 0) & (self.task_item_num > 0)

        worker_task_item_owner = self.worker_task_item_owner[:, None, :]
        worker_task_item_owner = worker_task_item_owner.expand(-1, NT, -1)
        task_item_owner_in_worker = worker_task_item_owner.gather(2, self.task_item_owner_id.long())
        task_item_owner_in_worker = (task_item_owner_in_worker > 0) & (self.task_item_num > 0)

        # 同一个sku,不同货主,不能在一个拣选单
        mask |= torch.any(task_item_in_worker & ~task_item_owner_in_worker, 2)

        worker_load_limit = self.worker_load_limit - self.worker_used_load
        mask |= (self.task_load > worker_load_limit[:, None])

        task_area = self.task_area + self.worker_used_area[:, None, :]
        task_area_num = task_area.clamp(0, 1).sum(2, dtype=torch.int32)
        mask |= (task_area_num > self.worker_area_limit[:, None])

        tak_area_group = self.task_area_group + self.worker_used_area_group[:, None, :]
        tak_area_group_num = tak_area_group.clamp(0, 1).sum(2, dtype=torch.int32)
        mask |= (tak_area_group_num > self.worker_area_group_limit[:, None])

        return mask

    def finished(self):
        return torch.all(self.task_demand_now <= 0, 1)


class Objective:

    def step_worker_end(self):
        area_num = self.worker_used_area.clamp(0, 1).sum(1)
        roadway_num = self.worker_used_roadway.clamp(0, 1).sum(1)
        item_num = self.worker_task_item.clamp(0, 1).sum(1)
        penalty = (self.worker_load_limit - self.worker_used_load) * 10
        return area_num * 100 + roadway_num * 10 + item_num + penalty


def make_problem_from_json(data):
    if isinstance(data, str):
        data = json.loads(data)
    problem = Problem()
    problem.id = data["id"]
    if 'uuid' in data:
        problem.uuid = data["uuid"]

    problem.task_item_id = torch.tensor(data["task_item_id"], dtype=torch.int32)
    problem.task_item_owner_id = torch.tensor(data["task_item_owner_id"], dtype=torch.int32)
    problem.task_item_num = torch.tensor(data["task_item_num"], dtype=torch.int32)
    problem.task_area = torch.tensor(data["task_area"], dtype=torch.int32)
    problem.task_roadway = torch.tensor(data["task_roadway"], dtype=torch.int32)
    problem.task_out_stock_time = torch.tensor(data["task_out_stock_time"], dtype=torch.int32)
    problem.task_area_group = torch.tensor(data["task_area_group"], dtype=torch.int32)

    NT = problem.task_item_id.size(0)
    problem.task_load = torch.ones(NT, dtype=torch.int32)
    problem.task_group = torch.zeros(NT, dtype=torch.int32)
    problem.task_demand = torch.ones(NT, dtype=torch.int32)

    problem.worker_load_limit = torch.tensor(data["worker_load_limit"], dtype=torch.int32)
    problem.worker_area_limit = torch.tensor(data["worker_area_limit"], dtype=torch.int32)
    problem.worker_area_group_limit = torch.tensor(data["worker_area_group_limit"], dtype=torch.int32)

    problem.features = features
    problem.variables = variables
    problem.constraint = Constraint
    problem.objective = Objective

    return problem


def make_problem(batch_count, batch_size=1, task_count=100):
    assert batch_size == 1

    NT = task_count
    problem_list = []
    for i in range(batch_count):
        problem = Problem()
        problem.id = i

        device = Solver().device
        p = torch.ones(NT, 1000, dtype=torch.float32, device=device)
        problem.task_item_id = torch.multinomial(p, 10).to(torch.int32).cpu()
        problem.task_item_owner_id = torch.multinomial(p, 10).to(torch.int32).cpu()
        problem.task_item_num = torch.randint(0, 5, (NT, 10), dtype=torch.int32)
        problem.task_area = torch.randint(0, 5, (NT, 10), dtype=torch.int32).clamp(0, 1)
        problem.task_roadway = torch.randint(0, 5, (NT, 200), dtype=torch.int32).clamp(0, 1)
        problem.task_area_group = torch.randint(0, 5, (NT, 10), dtype=torch.int32).clamp(0, 1)

        problem.task_load = torch.ones(NT, dtype=torch.int32)
        problem.task_group = torch.zeros(NT, dtype=torch.int32)
        problem.task_demand = torch.ones(NT, dtype=torch.int32)

        problem.worker_load_limit = torch.tensor([20], dtype=torch.int32)
        problem.worker_area_limit = torch.tensor([10], dtype=torch.int32)
        problem.worker_area_group_limit = torch.tensor([10], dtype=torch.int32)

        problem.features = features
        problem.variables = variables
        problem.constraint = Constraint
        problem.objective = Objective

        problem_list.append(problem)

    return problem_list


if __name__ == '__main__':
    import sys
    import os.path as osp
    sys.path.append(osp.join(osp.dirname(__file__), '../'))
    import runner

    runner.run(make_problem)