|
import json |
|
|
|
from greedrl import Problem |
|
from greedrl.feature import * |
|
from greedrl.variable import * |
|
|
|
features = [continuous_feature('worker_weight_limit'), |
|
continuous_feature('worker_ready_time'), |
|
continuous_feature('worker_due_time'), |
|
continuous_feature('worker_basic_cost'), |
|
continuous_feature('worker_distance_cost'), |
|
continuous_feature('task_demand'), |
|
continuous_feature('task_weight'), |
|
continuous_feature('task_ready_time'), |
|
continuous_feature('task_due_time'), |
|
continuous_feature('task_service_time'), |
|
continuous_feature('distance_matrix')] |
|
|
|
variables = [task_demand_now('task_demand_now', feature='task_demand'), |
|
task_demand_now('task_demand_this', feature='task_demand', only_this=True), |
|
feature_variable('task_weight'), |
|
feature_variable('task_due_time'), |
|
feature_variable('task_ready_time'), |
|
feature_variable('task_service_time'), |
|
worker_variable('worker_weight_limit'), |
|
worker_variable('worker_due_time'), |
|
worker_variable('worker_basic_cost'), |
|
worker_variable('worker_distance_cost'), |
|
worker_used_resource('worker_used_weight', task_require='task_weight'), |
|
worker_used_resource('worker_used_time', 'distance_matrix', 'task_service_time', 'task_ready_time', |
|
'worker_ready_time'), |
|
edge_variable('distance_last_to_this', feature='distance_matrix', last_to_this=True), |
|
edge_variable('distance_this_to_task', feature='distance_matrix', this_to_task=True), |
|
edge_variable('distance_task_to_end', feature='distance_matrix', task_to_end=True)] |
|
|
|
|
|
class Constraint: |
|
|
|
def do_task(self): |
|
return self.task_demand_this |
|
|
|
def mask_task(self): |
|
|
|
mask = self.task_demand_now <= 0 |
|
|
|
worker_weight_limit = self.worker_weight_limit - self.worker_used_weight |
|
mask |= self.task_demand_now * self.task_weight > worker_weight_limit[:, None] |
|
|
|
worker_used_time = self.worker_used_time[:, None] + self.distance_this_to_task |
|
mask |= worker_used_time > self.task_due_time |
|
|
|
worker_used_time = torch.max(worker_used_time, self.task_ready_time) |
|
worker_used_time += self.task_service_time |
|
worker_used_time += self.distance_task_to_end |
|
mask |= worker_used_time > self.worker_due_time[:, None] |
|
|
|
return mask |
|
|
|
def finished(self): |
|
return torch.all(self.task_demand_now <= 0, 1) |
|
|
|
|
|
class Objective: |
|
|
|
def step_worker_start(self): |
|
return self.worker_basic_cost |
|
|
|
def step_worker_end(self): |
|
return self.distance_last_to_this * self.worker_distance_cost |
|
|
|
def step_task(self): |
|
return self.distance_last_to_this * self.worker_distance_cost |
|
|
|
|
|
def make_problem_from_json(data): |
|
if isinstance(data, str): |
|
data = json.loads(data) |
|
|
|
problem = Problem() |
|
problem.worker_weight_limit = torch.tensor(data['worker_weight_limit'], dtype=torch.float32) |
|
problem.worker_ready_time = torch.tensor(data['worker_ready_time'], dtype=torch.float32) |
|
problem.worker_due_time = torch.tensor(data['worker_due_time'], dtype=torch.float32) |
|
problem.worker_basic_cost = torch.tensor(data['worker_basic_cost'], dtype=torch.float32) |
|
problem.worker_distance_cost = torch.tensor(data['worker_distance_cost'], dtype=torch.float32) |
|
|
|
problem.task_demand = torch.tensor(data['task_demand'], dtype=torch.int32) |
|
problem.task_weight = torch.tensor(data['task_weight'], dtype=torch.float32) |
|
problem.task_ready_time = torch.tensor(data['task_ready_time'], dtype=torch.float32) |
|
problem.task_due_time = torch.tensor(data['task_due_time'], dtype=torch.float32) |
|
problem.task_service_time = torch.tensor(data['task_service_time'], dtype=torch.float32) |
|
|
|
problem.distance_matrix = torch.tensor(data['distance_matrix'], dtype=torch.float32); |
|
|
|
problem.features = features |
|
problem.variables = variables |
|
problem.constraint = Constraint |
|
problem.objective = Objective |
|
|
|
return problem |
|
|
|
|
|
def make_problem(batch_count, batch_size=1, task_count=100): |
|
assert batch_size == 1 |
|
|
|
NT = task_count |
|
problem_list = [] |
|
for i in range(batch_count): |
|
problem = Problem() |
|
problem.id = i |
|
|
|
problem.worker_weight_limit = torch.tensor([50], dtype=torch.float32) |
|
problem.worker_ready_time = torch.tensor([0], dtype=torch.float32) |
|
problem.worker_due_time = torch.tensor([1000000], dtype=torch.float32) |
|
problem.worker_basic_cost = torch.tensor([100], dtype=torch.float32) |
|
problem.worker_distance_cost = torch.tensor([1], dtype=torch.float32) |
|
|
|
problem.task_demand = torch.randint(1, 10, (NT,), dtype=torch.int32) |
|
problem.task_weight = torch.ones(NT, dtype=torch.float32) |
|
problem.task_ready_time = torch.zeros(NT, dtype=torch.float32) |
|
problem.task_due_time = torch.randint(10000, 100000, (NT,), dtype=torch.float32) |
|
problem.task_service_time = torch.zeros(NT, dtype=torch.float32) |
|
|
|
loc = torch.rand(NT + 1, 2, dtype=torch.float32) |
|
problem.distance_matrix = torch.norm(loc[:, None, :] - loc[None, :, :], dim=2) * 1000 |
|
problem_list.append(problem) |
|
|
|
problem.features = features |
|
problem.variables = variables |
|
problem.constraint = Constraint |
|
problem.objective = Objective |
|
|
|
return problem_list |
|
|
|
|
|
if __name__ == '__main__': |
|
import sys |
|
import os.path as osp |
|
sys.path.append(osp.join(osp.dirname(__file__), '../')) |
|
import runner |
|
|
|
runner.run(make_problem) |
|
|