from greedrl.feature import * from greedrl.variable import * from greedrl import Problem features = [continuous_feature('task_demand'), continuous_feature('worker_weight_limit'), continuous_feature('distance_matrix'), variable_feature('distance_this_to_task'), variable_feature('distance_task_to_end')] variables = [task_demand_now('task_demand_now', feature='task_demand'), task_demand_now('task_demand_this', feature='task_demand', only_this=True), feature_variable('task_weight'), worker_variable('worker_weight_limit'), worker_used_resource('worker_used_weight', task_require='task_weight'), edge_variable('distance_last_to_this', feature='distance_matrix', last_to_this=True), edge_variable('distance_this_to_task', feature='distance_matrix', this_to_task=True), edge_variable('distance_task_to_end', feature='distance_matrix', task_to_end=True)] class Constraint: def do_task(self): return self.task_demand_this def mask_task(self): # 已经完成的任务 mask = self.task_demand_now <= 0 # 车辆容量限制 worker_weight_limit = self.worker_weight_limit - self.worker_used_weight mask |= self.task_demand_now * self.task_weight > worker_weight_limit[:, None] return mask def finished(self): return torch.all(self.task_demand_now <= 0, 1) class Objective: def step_worker_end(self): return self.distance_last_to_this def step_task(self): return self.distance_last_to_this def make_problem(batch_count, batch_size=1, task_count=100): assert task_count in (100, 1000, 2000, 5000) weight_limit = 50 problem_list = [] for i in range(batch_count): problem = Problem(True) problem.id = torch.arange(batch_size) + i * batch_size; problem.worker_weight_limit = torch.full((batch_size, 1), weight_limit, dtype=torch.int32) N = task_count problem.task_demand = torch.randint(1, 10, (batch_size, N), dtype=torch.int32) problem.task_demand_x = problem.task_demand.float() / weight_limit # 一个单位的task_demand的重量 problem.task_weight = torch.ones(batch_size, N, dtype=torch.int32) loc = torch.rand(batch_size, N + 1, 2, dtype=torch.float32) problem.task_location = loc[:, 1:, :] problem.worker_location = loc[:, 0:1, :] distance_matrix = torch.norm(loc[:, :, None, :] - loc[:, None, :, :], dim=3) problem.distance_matrix = distance_matrix problem.features = features problem.variables = variables problem.constraint = Constraint problem.objective = Objective problem_list.append(problem) return problem_list if __name__ == '__main__': import sys import os.path as osp sys.path.append(osp.join(osp.dirname(__file__), '../')) import runner runner.run(make_problem)