tangzhy commited on
Commit
029d5f3
1 Parent(s): 845f07a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +17 -15
README.md CHANGED
@@ -1,5 +1,7 @@
1
  see our paper in https://arxiv.org/abs/2405.17743
2
 
 
 
3
  ## Model Details
4
 
5
  LLaMA-3-8B-ORLM is fully fine-tuned on the OR-Instruct data and built with Meta [LLaMA-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) model.
@@ -8,14 +10,14 @@ More training details can be seen at https://arxiv.org/abs/2405.17743
8
  ## Model Usage
9
 
10
  Prompting Template:
11
- '''text
12
  Below is an operations research question. Build a mathematical model and corresponding python code using `coptpy` that appropriately addresses the question.
13
 
14
- \# Question:
15
  {Question}
16
 
17
- \# Response:
18
- '''
19
 
20
  Please replace the `{Question}` with any natural language OR question.
21
 
@@ -54,7 +56,7 @@ Using this model, we can apply linear programming techniques to find the optimal
54
  ## Python Code Solution Using `coptpy`:
55
  Here is a Python script using the `coptpy` library to solve the problem:
56
 
57
- ```python
58
  import coptpy as cp
59
  from coptpy import COPT
60
 
@@ -86,7 +88,7 @@ if model.status == COPT.OPTIMAL:
86
  print("Number of small pills to be made: {:.0f}".format(y.x))
87
  else:
88
  print("No optimal solution found.")
89
- ```
90
 
91
  In this script, we first create a `COPT` environment and model. Then, we add two integer decision variables `x` and `y`, representing the number of large and small pills to be made, respectively.
92
 
@@ -104,21 +106,21 @@ This script provides a complete example of using the `coptpy` library to solve t
104
 
105
  ## Performances
106
 
107
- Below is the comparison of performance on the NL4OPT, MAMO, and IndustryOR benchmarks. Values marked with a ^*^ are directly copied from original papers, with blanks where data were not reported. The highest results are highlighted in bold.
108
 
109
  | **Method** | **NL4OPT** | **MAMO EasyLP** | **MAMO ComplexLP** | **IndustryOR** | **Micro Avg** | **Macro Avg** |
110
  |------------------------------------------------|-------------------------|-----------------------|----------------------|-------------------|-----------------|-----------------|
111
  | *Methods based on PLMs* | | | | | | |
112
- | `tag-BART` | 47.9%^*^ | - | - | - | - | - |
113
  | *Methods based on GPT-3.5* | | | | | | |
114
- | `Standard` | 42.4%^*^ | - | - | - | - | - |
115
- | `Reflexion` | 50.7%^*^ | - | - | - | - | - |
116
- | `Chain-of-Experts` | 58.9%^*^ | - | - | - | - | - |
117
  | *Methods based on GPT-4* | | | | | | |
118
- | `Standard` | 47.3%^*^ | 66.5%^*^ | 14.6%^*^ | 28.0% | 50.2% | 39.1% |
119
- | `Reflexion` | 53.0%^*^ | - | - | - | - | - |
120
- | `Chain-of-Experts` | 64.2%^*^ | - | - | - | - | - |
121
- | `OptiMUS` | 78.8%^*^ | - | - | - | - | - |
122
  | *ORLMs based on open-source LLMs* | | | | | | |
123
  | `ORLM-Mistral-7B` | 84.4% | 81.4% | 32.0% | 27.0% | 68.8% | 56.2% |
124
  | `ORLM-Deepseek-Math-7B-Base` | **86.5%** | 82.2% | **37.9%** | 33.0% | 71.2% | 59.9% |
 
1
  see our paper in https://arxiv.org/abs/2405.17743
2
 
3
+ github repo: https://github.com/Cardinal-Operations/ORLM
4
+
5
  ## Model Details
6
 
7
  LLaMA-3-8B-ORLM is fully fine-tuned on the OR-Instruct data and built with Meta [LLaMA-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) model.
 
10
  ## Model Usage
11
 
12
  Prompting Template:
13
+ ```text
14
  Below is an operations research question. Build a mathematical model and corresponding python code using `coptpy` that appropriately addresses the question.
15
 
16
+ # Question:
17
  {Question}
18
 
19
+ # Response:
20
+ ```
21
 
22
  Please replace the `{Question}` with any natural language OR question.
23
 
 
56
  ## Python Code Solution Using `coptpy`:
57
  Here is a Python script using the `coptpy` library to solve the problem:
58
 
59
+ \`\`\`python
60
  import coptpy as cp
61
  from coptpy import COPT
62
 
 
88
  print("Number of small pills to be made: {:.0f}".format(y.x))
89
  else:
90
  print("No optimal solution found.")
91
+ \`\`\`
92
 
93
  In this script, we first create a `COPT` environment and model. Then, we add two integer decision variables `x` and `y`, representing the number of large and small pills to be made, respectively.
94
 
 
106
 
107
  ## Performances
108
 
109
+ Below is the comparison of performance on the NL4OPT, MAMO, and IndustryOR benchmarks. Values marked with a <sup>*</sup> are directly copied from original papers, with blanks where data were not reported. The highest results are highlighted in bold.
110
 
111
  | **Method** | **NL4OPT** | **MAMO EasyLP** | **MAMO ComplexLP** | **IndustryOR** | **Micro Avg** | **Macro Avg** |
112
  |------------------------------------------------|-------------------------|-----------------------|----------------------|-------------------|-----------------|-----------------|
113
  | *Methods based on PLMs* | | | | | | |
114
+ | `tag-BART` | 47.9%<sup>*</sup> | - | - | - | - | - |
115
  | *Methods based on GPT-3.5* | | | | | | |
116
+ | `Standard` | 42.4%<sup>*</sup> | - | - | - | - | - |
117
+ | `Reflexion` | 50.7%<sup>*</sup> | - | - | - | - | - |
118
+ | `Chain-of-Experts` | 58.9%<sup>*</sup> | - | - | - | - | - |
119
  | *Methods based on GPT-4* | | | | | | |
120
+ | `Standard` | 47.3%<sup>*</sup> | 66.5%<sup>*</sup> | 14.6%<sup>*</sup> | 28.0% | 50.2% | 39.1% |
121
+ | `Reflexion` | 53.0%<sup>*</sup> | - | - | - | - | - |
122
+ | `Chain-of-Experts` | 64.2%<sup>*</sup> | - | - | - | - | - |
123
+ | `OptiMUS` | 78.8%<sup>*</sup> | - | - | - | - | - |
124
  | *ORLMs based on open-source LLMs* | | | | | | |
125
  | `ORLM-Mistral-7B` | 84.4% | 81.4% | 32.0% | 27.0% | 68.8% | 56.2% |
126
  | `ORLM-Deepseek-Math-7B-Base` | **86.5%** | 82.2% | **37.9%** | 33.0% | 71.2% | 59.9% |