oguzhandoganoglu
commited on
Commit
•
83b553e
1
Parent(s):
41fef3c
Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,71 @@
|
|
1 |
-
---
|
2 |
-
license: llama3.1
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: llama3.1
|
3 |
+
language:
|
4 |
+
- tr
|
5 |
+
base_model: meta-llama/Meta-Llama-3.1-8B
|
6 |
+
---
|
7 |
+
<img src="https://cdn-uploads.huggingface.co/production/uploads/6639e48c27ef2d37a71eb4aa/Ds_KOVYwhRQ1FQY8S4WqO.png"
|
8 |
+
alt="CEREBRUM LLM" width="420"/>
|
9 |
+
|
10 |
+
|
11 |
+
# CERE V2 -LLMA-3.1-8b-TR
|
12 |
+
|
13 |
+
This model is an fine-tuned version of a Llama3.1 8b Large Language Model (LLM) for Turkish. It was trained on a high quality Turkish instruction sets created from various open-source and internal resources. Turkish Instruction dataset carefully annotated to carry out Turkish instructions in an accurate and organized manner.
|
14 |
+
|
15 |
+
## Model Details
|
16 |
+
|
17 |
+
- **Base Model**: LLMA 3.1 8B based LLM
|
18 |
+
- **Tokenizer Extension**: Specifically extended for Turkish
|
19 |
+
- **Training Dataset**: Cleaned Turkish raw data with 5 billion tokens, custom Turkish instruction sets
|
20 |
+
- **Training Method**: Initially with DORA, followed by fine-tuning with LORA
|
21 |
+
|
22 |
+
## Benchmark Results
|
23 |
+
|
24 |
+
- **Winogrande_tr**: 56.16
|
25 |
+
- **TruthfulQA_tr_v0.2**: 47.46
|
26 |
+
- **Mmlu_tr_v0.2**: 46.46
|
27 |
+
- **HellaSwag_tr_v0.2**: 48.87
|
28 |
+
- **GSM8k_tr_v0.2**: 25.43
|
29 |
+
- **Arc_tr_v0.2**: 41.97
|
30 |
+
|
31 |
+
|
32 |
+
## Usage Examples
|
33 |
+
|
34 |
+
```python
|
35 |
+
|
36 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
37 |
+
device = "cuda" # the device to load the model onto
|
38 |
+
|
39 |
+
model = AutoModelForCausalLM.from_pretrained(
|
40 |
+
"Cerebrum/cere-llama-3.1-8B-tr",
|
41 |
+
torch_dtype="auto",
|
42 |
+
device_map="auto"
|
43 |
+
)
|
44 |
+
tokenizer = AutoTokenizer.from_pretrained("Cerebrum/cere-llama-3.1-8B-tr")
|
45 |
+
|
46 |
+
prompt = "Python'da ekrana 'Merhaba Dünya' nasıl yazılır?"
|
47 |
+
messages = [
|
48 |
+
{"role": "system", "content": "Sen, Cerebrum Tech tarafından üretilen ve verilen talimatları takip ederek en iyi cevabı üretmeye çalışan yardımcı bir yapay zekasın."},
|
49 |
+
{"role": "user", "content": prompt}
|
50 |
+
]
|
51 |
+
text = tokenizer.apply_chat_template(
|
52 |
+
messages,
|
53 |
+
tokenize=False,
|
54 |
+
add_generation_prompt=True
|
55 |
+
)
|
56 |
+
model_inputs = tokenizer([text], return_tensors="pt").to(device)
|
57 |
+
|
58 |
+
generated_ids = model.generate(
|
59 |
+
model_inputs.input_ids,
|
60 |
+
temperature=0.3,
|
61 |
+
top_k=50,
|
62 |
+
top_p=0.9,
|
63 |
+
max_new_tokens=512,
|
64 |
+
repetition_penalty=1,
|
65 |
+
)
|
66 |
+
generated_ids = [
|
67 |
+
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
68 |
+
]
|
69 |
+
|
70 |
+
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
71 |
+
```
|