yamildiego's picture
fix model default
fddc5d7
raw
history blame
6.19 kB
from typing import Dict, List, Any
import base64
from PIL import Image
from io import BytesIO
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker
import torch
import numpy as np
import cv2
import controlnet_hinter
# set device
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
if device.type != 'cuda':
raise ValueError("need to run on GPU")
# set mixed precision dtype
dtype = torch.bfloat16 if torch.cuda.get_device_capability()[0] == 8 else torch.float16
CONTROLNET_MAPPING = {
"depth": {
"model_id": "lllyasviel/sd-controlnet-depth",
"hinter": controlnet_hinter.hint_depth
},
}
# SD_ID_MAPPING = {
# "default": "Lykon/dreamshaper-8",
# "dreamshaper": "stablediffusionapi/dreamshaper-xl",
# "juggernaut": "stablediffusionapi/juggernaut-xl-v8",
# "realistic":"SG161222/Realistic_Vision_V1.4",
# "rev":"s6yx/ReV_Animated"
# }
class EndpointHandler():
def __init__(self, path=""):
self.control_type = "depth"
self.controlnet = ControlNetModel.from_pretrained(CONTROLNET_MAPPING[self.control_type]["model_id"],torch_dtype=dtype).to(device)
self.stable_diffusion_id_0 = "Lykon/dreamshaper-8"
self.default = StableDiffusionControlNetPipeline.from_pretrained(self.stable_diffusion_id_0,
controlnet=self.controlnet,
torch_dtype=dtype,
safety_checker=StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker", torch_dtype=dtype)).to("cuda")
# self.stable_diffusion_id_1 = "stablediffusionapi/dreamshaper-xl"
# self.juggernaut = StableDiffusionControlNetPipeline.from_pretrained(self.stable_diffusion_id_1,
# controlnet=self.controlnet,
# torch_dtype=dtype,
# safety_checker=StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker", torch_dtype=dtype)).to("cuda")
# self.stable_diffusion_id_2 = "stablediffusionapi/juggernaut-xl-v8"
# self.realistic = StableDiffusionControlNetPipeline.from_pretrained(self.stable_diffusion_id_2,
# controlnet=self.controlnet,
# torch_dtype=dtype,
# safety_checker=StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker", torch_dtype=dtype)).to("cuda")
# self.stable_diffusion_id_3 = "SG161222/Realistic_Vision_V1.4"
# self.pipe = StableDiffusionControlNetPipeline.from_pretrained(self.stable_diffusion_id_3,
# controlnet=self.controlnet,
# torch_dtype=dtype,
# safety_checker=StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker", torch_dtype=dtype)).to("cuda")
# self.stable_diffusion_id_4 = "s6yx/ReV_Animated"
# self.rev = StableDiffusionControlNetPipeline.from_pretrained(self.stable_diffusion_id_4,
# controlnet=self.controlnet,
# torch_dtype=dtype,
# safety_checker=StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker", torch_dtype=dtype)).to("cuda")
# Define Generator with seed
self.generator = torch.Generator(device=device.type).manual_seed(3)
def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
"""
:param data: A dictionary contains `prompt` and optional `image_depth_map` field.
:return: A dictionary with `image` field contains image in base64.
"""
# hyperparamters
sd_model = data.pop("sd_model", "default")
prompt = data.pop("inputs", None)
negative_prompt = data.pop("negative_prompt", None)
image_depth_map = data.pop("image_depth_map", None)
steps = data.pop("steps", 25)
scale = data.pop("scale", 7)
height = data.pop("height", None)
width = data.pop("width", None)
controlnet_conditioning_scale = data.pop("controlnet_conditioning_scale", 1.0)
if sd_model is None or not hasattr(self, sd_model):
return {"error": "Modelo SD no especificado o no válido"}
if prompt is None:
return {"error": "Please provide a prompt"}
if(image_depth_map is None):
return {"error": "Please provide a image_depth_map"}
pipe = getattr(self, sd_model)
# process image
image = self.decode_base64_image(image_depth_map)
# run inference pipeline
out = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
image=image,
num_inference_steps=steps,
guidance_scale=scale,
num_images_per_prompt=1,
height=height,
width=width,
controlnet_conditioning_scale=controlnet_conditioning_scale,
generator=self.generator
)
# return first generate PIL image
return out.images[0]
# helper to decode input image
def decode_base64_image(self, image_string):
base64_image = base64.b64decode(image_string)
buffer = BytesIO(base64_image)
image = Image.open(buffer)
return image