|
from typing import Dict, List, Any |
|
import base64 |
|
from PIL import Image |
|
from io import BytesIO |
|
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel |
|
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker |
|
|
|
import torch |
|
|
|
|
|
import numpy as np |
|
import cv2 |
|
import controlnet_hinter |
|
|
|
|
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
|
if device.type != 'cuda': |
|
raise ValueError("need to run on GPU") |
|
|
|
dtype = torch.bfloat16 if torch.cuda.get_device_capability()[0] == 8 else torch.float16 |
|
|
|
CONTROLNET_MAPPING = { |
|
"depth": { |
|
"model_id": "lllyasviel/sd-controlnet-depth", |
|
"hinter": controlnet_hinter.hint_depth |
|
}, |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class EndpointHandler(): |
|
def __init__(self, path=""): |
|
self.control_type = "depth" |
|
self.controlnet = ControlNetModel.from_pretrained(CONTROLNET_MAPPING[self.control_type]["model_id"],torch_dtype=dtype).to(device) |
|
|
|
self.stable_diffusion_id_0 = "Lykon/dreamshaper-8" |
|
self.default = StableDiffusionControlNetPipeline.from_pretrained(self.stable_diffusion_id_0, |
|
controlnet=self.controlnet, |
|
torch_dtype=dtype, |
|
safety_checker=StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker", torch_dtype=dtype)).to("cuda") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.generator = torch.Generator(device=device.type).manual_seed(3) |
|
|
|
def __call__(self, data: Any) -> List[List[Dict[str, float]]]: |
|
""" |
|
:param data: A dictionary contains `prompt` and optional `image_depth_map` field. |
|
:return: A dictionary with `image` field contains image in base64. |
|
""" |
|
|
|
|
|
|
|
sd_model = data.pop("sd_model", "default") |
|
prompt = data.pop("inputs", None) |
|
negative_prompt = data.pop("negative_prompt", None) |
|
image_depth_map = data.pop("image_depth_map", None) |
|
steps = data.pop("steps", 25) |
|
scale = data.pop("scale", 7) |
|
height = data.pop("height", None) |
|
width = data.pop("width", None) |
|
controlnet_conditioning_scale = data.pop("controlnet_conditioning_scale", 1.0) |
|
|
|
|
|
if sd_model is None or not hasattr(self, sd_model): |
|
return {"error": "Modelo SD no especificado o no válido"} |
|
|
|
if prompt is None: |
|
return {"error": "Please provide a prompt"} |
|
|
|
if(image_depth_map is None): |
|
return {"error": "Please provide a image_depth_map"} |
|
|
|
|
|
pipe = getattr(self, sd_model) |
|
|
|
|
|
image = self.decode_base64_image(image_depth_map) |
|
|
|
|
|
out = pipe( |
|
prompt=prompt, |
|
negative_prompt=negative_prompt, |
|
image=image, |
|
num_inference_steps=steps, |
|
guidance_scale=scale, |
|
num_images_per_prompt=1, |
|
height=height, |
|
width=width, |
|
controlnet_conditioning_scale=controlnet_conditioning_scale, |
|
generator=self.generator |
|
) |
|
|
|
|
|
return out.images[0] |
|
|
|
|
|
def decode_base64_image(self, image_string): |
|
base64_image = base64.b64decode(image_string) |
|
buffer = BytesIO(base64_image) |
|
image = Image.open(buffer) |
|
return image |