|
# Use the specified base image |
|
FROM nvcr.io/nvidia/pytorch:23.12-py3 |
|
|
|
# Set the working directory to your project directory |
|
WORKDIR ./ |
|
|
|
# Copy the contents of your project into the Docker image |
|
COPY . . |
|
|
|
# Create and activate Conda environment |
|
# RUN conda create --name plm python=3.10 |
|
# SHELL ["conda", "run", "-n", "plm", "/bin/bash", "-c"] |
|
# RUN conda activate plm |
|
|
|
# Install Miniconda |
|
# RUN wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh -O miniconda.sh && \ |
|
|
|
|
|
# ENV PATH="/opt/conda/bin:${PATH}" |
|
|
|
# Install dependencies |
|
# RUN cd protein_lm/modeling/models/libs/ && pip install -e causal-conv1d && pip install -e mamba && cd ../../../../ |
|
# RUN pip install transformers datasets accelerate evaluate pytest fair-esm biopython deepspeed |
|
# RUN pip install -e . |
|
# RUN pip install hydra-core --upgrade |
|
# RUN curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh |
|
# source "$HOME/.cargo/env" |
|
# RUN pip install -e protein_lm/tokenizer/rust_trie |
|
|
|
|
|
|