--- base_model: openai/whisper-base datasets: - fleurs language: - tr license: apache-2.0 metrics: - wer tags: - hf-asr-leaderboard - generated_from_trainer model-index: - name: Whisper Base Turkish Punctuation 4k - Chee Li results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: Google Fleurs type: fleurs config: tr_tr split: None args: 'config: tr split: test' metrics: - type: wer value: 37.878198646651626 name: Wer --- # Whisper Base Turkish Punctuation 4k - Chee Li This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the Google Fleurs dataset. It achieves the following results on the evaluation set: - Loss: 0.6273 - Wer: 37.8782 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:-------:| | 0.1116 | 5.5866 | 1000 | 0.4785 | 31.6948 | | 0.0073 | 11.1732 | 2000 | 0.5710 | 34.9615 | | 0.0036 | 16.7598 | 3000 | 0.6137 | 36.7349 | | 0.0027 | 22.3464 | 4000 | 0.6273 | 37.8782 | ### Framework versions - Transformers 4.43.4 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1