--- base_model: openai/whisper-large-v3 language: - rus license: apache-2.0 metrics: - wer tags: - hf-asr-leaderboard - generated_from_trainer model-index: - name: Whisper Large V3 rus pl - Chee Li results: [] --- # Whisper Large V3 rus pl - Chee Li This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the Google Fleurs dataset. It achieves the following results on the evaluation set: - Loss: 0.1164 - Wer: 98.5381 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:--------:| | 0.0324 | 2.6178 | 1000 | 0.0814 | 70.5971 | | 0.0058 | 5.2356 | 2000 | 0.1047 | 117.8747 | | 0.0033 | 7.8534 | 3000 | 0.1139 | 120.5834 | | 0.0022 | 10.4712 | 4000 | 0.1164 | 98.5381 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.3.1+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1