--- license: mit ---

Enabling Discriminative Reasoning in Large Language Models for Legal Judgment Prediction[Paper]

## Released Resources - 🤗The Huggingface model: Based on Qwen2-7B, we trained a model using the CAIL2018 dataset. [Qwen2-7B-CAIL2018-step-8765](https://huggingface.co/ChenlongDeng/ADAPT-Qwen2-7B-CAIL2018-step-8765) - The training trajectories: We release the 80,141 training trajectories of the CAIL2018 dataset in [this link](https://pan.baidu.com/s/1HkLTedi1r6WB0CBvH5dtrA?pwd=p9ex) ## Supported Prompts ❗️Note: Our released model needs the `Qwen chat_template` to conduct correct generation. We support the following four prompts to enable reasoning. You should use `the same input format and prompt` to achieve the best performance. ### Prompt 1: ADAPT Reasoning ```python case_input = f"案件描述:{description}\n被告人姓名:{defendant_name}" prompt = "请你采用ADAPT框架分析以上案件中该被告人可能被判处的罪名、适用法条和刑期" model_input_str = '\n'.join(case_input, prompt) ``` ### Prompt 2: Ask ```python case_input = f"案件描述:{description}\n被告人姓名:{defendant_name}" prompt = "请你用法律理论分析以上案件中该被告人在行为主体,起因、行为和结果,行为对象,犯罪主观四个方面的信息" model_input_str = '\n'.join(case_input, prompt) ``` ### Prompt 3: Article ```python case_input = f"案件描述:{description}\n被告人姓名:{defendant_name}" prompt = "请你依次列出以上案件中被告人适用的法条具体内容,以及适用该法条的原因" model_input_str = '\n'.join(case_input, prompt) ``` ### Prompt 4: Sentencing factors ```python case_input = f"案件描述:{description}\n被告人姓名:{defendant_name}\n罪名:{crimes}" # e.g., 污染环境罪 prompt = "请你分析以上案件中的量刑区间和量刑因素,并给出最后的量刑预测结果" model_input_str = '\n'.join(case_input, prompt) ``` ## Citation ``` @misc{deng2024enablingdiscriminativereasoningllms, title={Enabling Discriminative Reasoning in LLMs for Legal Judgment Prediction}, author={Chenlong Deng and Kelong Mao and Yuyao Zhang and Zhicheng Dou}, year={2024}, eprint={2407.01964}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2407.01964}, } ```