|
|
|
from typing import Dict, List, Any |
|
from PIL import Image |
|
import torch |
|
import os |
|
import io |
|
import base64 |
|
from io import BytesIO |
|
|
|
from transformers import Blip2Processor, Blip2ForConditionalGeneration |
|
|
|
|
|
|
|
|
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
|
|
|
class EndpointHandler(): |
|
def __init__(self, path=""): |
|
|
|
print("####### Start Deploying #####") |
|
self.processor = Blip2Processor.from_pretrained("ChirathD/Blip-2-test-1") |
|
self.model = Blip2ForConditionalGeneration.from_pretrained("ChirathD/Blip-2-test-1").to(device) |
|
self.model.eval() |
|
self.model = self.model.to(device) |
|
|
|
|
|
|
|
def __call__(self, data: Any) -> Dict[str, Any]: |
|
""" |
|
Args: |
|
data (:obj:): |
|
includes the input data and the parameters for the inference. |
|
Return: |
|
A :obj:`dict`:. The object returned should be a dict of one list like {"captions": ["A hugging face at the office"]} containing : |
|
- "caption": A string corresponding to the generated caption. |
|
""" |
|
print(data) |
|
inputs = data.pop("inputs", data) |
|
parameters = data.pop("parameters", {}) |
|
print(input) |
|
image_bytes = base64.b64decode(inputs) |
|
image_io = io.BytesIO(image_bytes) |
|
image = Image.open(image_io) |
|
|
|
inputs = processor(images=image, return_tensors="pt").to(device, torch.float16) |
|
pixel_values = inputs.pixel_values |
|
|
|
generated_ids = model.generate(pixel_values=pixel_values, max_length=25) |
|
generated_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] |
|
print(generated_caption) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return {"captions": generated_caption} |