File size: 30,194 Bytes
2cf1f8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
# coding=utf-8
# Copyright 2023 the Falcon authors and HuggingFace Inc. team.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch Falcon model."""

import math
from typing import Optional, Tuple, Union

import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, LayerNorm, MSELoss
from torch.nn import functional as F

from transformers.modeling_outputs import (
    BaseModelOutputWithPastAndCrossAttentions,
    CausalLMOutputWithCrossAttentions,
    QuestionAnsweringModelOutput,
    SequenceClassifierOutputWithPast,
    TokenClassifierOutput,
)
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
from .configuration_falcon import FalconConfig


logger = logging.get_logger(__name__)

FALCON_PRETRAINED_MODEL_ARCHIVE_LIST = [
    "tiiuae/falcon-40b",
    "tiiuae/falcon-40b-instruct",
    "tiiuae/falcon-7b",
    "tiiuae/falcon-7b-instruct",
    "tiiuae/falcon-rw-7b",
    "tiiuae/falcon-rw-1b",
]
_CHECKPOINT_FOR_DOC = "Rocketknight1/falcon-rw-1b"
_CONFIG_FOR_DOC = "FalconConfig"


# NOTE(Hesslow): Unfortunately we did not fuse matmul and bias during training, this means that there's one additional quantization to bfloat16 between the operations.
# In order not to degrade the quality of our HF-port, we keep these characteristics in the final model.
class FalconLinear(nn.Linear):
    def forward(self, input: torch.Tensor) -> torch.Tensor:
        hidden_states = input @ self.weight.T
        if self.bias is None:
            return hidden_states
        return hidden_states + self.bias


# rotary pos emb helpers (torch.jit.script does not seem to support staticmethod...)
def rotate_half(x):
    x1, x2 = x[..., : x.shape[-1] // 2], x[..., x.shape[-1] // 2 :]
    return torch.cat((-x2, x1), dim=-1)


class FalconRotaryEmbedding(nn.Module):
    """Implementation of RotaryEmbedding from GPT-NeoX.
    This implementation is designed to operate on queries and keys that are compatible with `[batch_size,
    n_heads_per_partition, seq_len, head_dim]` (e.g. MinGPTAttention format).
    """

    def __init__(self, head_dim: int, base=10000):
        super().__init__()
        inv_freq = 1.0 / (base ** (torch.arange(0, head_dim, 2).float() / head_dim))
        self.register_buffer("inv_freq", inv_freq, persistent=False)
        self.head_dim = head_dim
        self.seq_len_cached = -1
        self.cos_cached: torch.Tensor | None = None
        self.sin_cached: torch.Tensor | None = None

    def cos_sin(self, seq_len: int, past_key_values_length: int, device="cpu", dtype=torch.bfloat16) -> torch.Tensor:
        total_length = seq_len + past_key_values_length
        if total_length > self.seq_len_cached:
            self.seq_len_cached = total_length
            t = torch.arange(total_length, device=device, dtype=self.inv_freq.dtype)
            freqs = torch.einsum("i,j->ij", t, self.inv_freq)
            emb = torch.cat((freqs, freqs), dim=-1).to(device)

            if dtype in [torch.float16, torch.bfloat16]:
                emb = emb.float()

            self.cos_cached = emb.cos()[None, :, :]
            self.sin_cached = emb.sin()[None, :, :]

            self.cos_cached = self.cos_cached.type(dtype)
            self.sin_cached = self.sin_cached.type(dtype)

        return (
            self.cos_cached[:, past_key_values_length : seq_len + past_key_values_length],
            self.sin_cached[:, past_key_values_length : seq_len + past_key_values_length],
        )

    def forward(self, query, key, past_key_values_length=0):
        batch, seq_len, head_dim = query.shape
        cos, sin = self.cos_sin(seq_len, past_key_values_length, query.device, query.dtype)
        return (query * cos) + (rotate_half(query) * sin), (key * cos) + (rotate_half(key) * sin)


def _make_causal_mask(
    input_ids_shape: torch.Size, device: torch.device, past_key_values_length: int
) -> torch.BoolTensor:
    """
    Make causal mask used for self-attention. This mask does not take the existing attention mask into account - it
    just blocks tokens from attending forwards in the sequence. The output shape will be `[batch_size, 1,
    target_length, target_length+past_key_values_length]`.
    """
    batch_size, target_length = input_ids_shape

    mask = torch.triu(torch.ones((target_length, target_length), dtype=torch.bool, device=device), diagonal=1)
    # If past_key_values_length is 0 this is an empty tensor and the concatenation is a no-op.
    # This code style is an unfortunate consequence of getting your TF engineer to port models; doing it this
    # way avoids a data-dependent conditional, which will help me when I have to port this to XLA later.
    past_mask = torch.zeros((target_length, past_key_values_length), dtype=torch.bool, device=device)
    mask = torch.cat([past_mask, mask], dim=-1)
    expanded_mask = mask[None, None, :, :].expand(batch_size, 1, target_length, target_length + past_key_values_length)
    return expanded_mask


def _expand_mask(mask: torch.Tensor, past_key_values_length: int) -> torch.BoolTensor:
    """
    Expands attention_mask from `[batch_size, seq_length]` to `[batch_size, 1, seq_length, seq_length + past_length]`.
    """
    batch_size, total_length = mask.shape
    seq_length = total_length - past_key_values_length if past_key_values_length is not None else total_length

    expanded_mask = ~(mask[:, None, None, :].to(torch.bool))
    return expanded_mask.expand(batch_size, 1, seq_length, total_length)


def build_alibi_tensor(attention_mask: torch.Tensor, num_heads: int, dtype: torch.dtype) -> torch.Tensor:
    batch_size, seq_length = attention_mask.shape
    closest_power_of_2 = 2 ** math.floor(math.log2(num_heads))
    base = torch.tensor(
        2 ** (-(2 ** -(math.log2(closest_power_of_2) - 3))), device=attention_mask.device, dtype=torch.float32
    )
    powers = torch.arange(1, 1 + closest_power_of_2, device=attention_mask.device, dtype=torch.int32)
    slopes = torch.pow(base, powers)

    if closest_power_of_2 != num_heads:
        extra_base = torch.tensor(
            2 ** (-(2 ** -(math.log2(2 * closest_power_of_2) - 3))), device=attention_mask.device, dtype=torch.float32
        )
        num_remaining_heads = min(closest_power_of_2, num_heads - closest_power_of_2)
        extra_powers = torch.arange(1, 1 + 2 * num_remaining_heads, 2, device=attention_mask.device, dtype=torch.int32)
        slopes = torch.cat([slopes, torch.pow(extra_base, extra_powers)], dim=0)

    # Note: alibi will added to the attention bias that will be applied to the query, key product of attention
    # => therefore alibi will have to be of shape (batch_size, num_heads, query_length, key_length)
    # => here we set (batch_size=1, num_heads=num_heads, query_length=1, key_length=max_length)
    # => the query_length dimension will then be broadcasted correctly
    # This is more or less identical to T5's relative position bias:
    # https://github.com/huggingface/transformers/blob/f681437203baa7671de3174b0fa583c349d9d5e1/src/transformers/models/t5/modeling_t5.py#L527
    arange_tensor = ((attention_mask.cumsum(dim=-1) - 1) * attention_mask)[:, None, :]
    alibi = slopes[..., None].bfloat16() * arange_tensor
    return alibi.reshape(batch_size * num_heads, 1, seq_length).to(dtype)


# Copied from transformers.models.bloom.modeling_bloom.dropout_add
def dropout_add(x: torch.Tensor, residual: torch.Tensor, prob: float, training: bool) -> torch.Tensor:
    """
    Dropout add function
    Args:
        x (`torch.tensor`, *required*):
            input tensor
        residual (`torch.tensor`, *required*):
            residual tensor
        prob (`float`, *required*):
            dropout probability
        training (`bool`, *required*):
            training mode
    """
    out = F.dropout(x, p=prob, training=training)
    out = residual + out
    return out


class FalconAttention(nn.Module):
    def __init__(self, config: FalconConfig):
        super().__init__()

        self.hidden_size = config.hidden_size
        self.num_heads = config.num_attention_heads
        self.head_dim = self.hidden_size // self.num_heads
        self.split_size = self.hidden_size
        self.hidden_dropout = config.hidden_dropout

        if self.head_dim * self.num_heads != self.hidden_size:
            raise ValueError(
                f"`hidden_size` must be divisible by num_heads (got `hidden_size`: {self.hidden_size} and `num_heads`:"
                f" {self.num_heads})."
            )

        self.maybe_rotary = FalconRotaryEmbedding(config.head_dim) if config.rotary else lambda q, k, t: (q, k)

        # Layer-wise attention scaling
        self.inv_norm_factor = 1.0 / math.sqrt(self.head_dim)
        self.beta = self.inv_norm_factor
        if config.new_decoder_architecture:
            qkv_out_dim = (config.num_kv_heads * 2 + config.num_attention_heads) * self.head_dim
        elif config.multi_query:
            qkv_out_dim = self.hidden_size + 2 * self.head_dim
        else:
            qkv_out_dim = 3 * self.hidden_size
        self.query_key_value = FalconLinear(self.hidden_size, qkv_out_dim, bias=config.bias)
        self.new_decoder_architecture = config.new_decoder_architecture
        self.multi_query = config.multi_query
        self.dense = FalconLinear(self.hidden_size, self.hidden_size, bias=config.bias)
        self.attention_dropout = nn.Dropout(config.attention_dropout)
        self.num_kv_heads = config.num_kv_heads if (self.new_decoder_architecture or not self.multi_query) else 1

    def _split_heads(self, fused_qkv: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
        """
        Split the last dimension into (num_heads, head_dim), results share same memory storage as `fused_qkv`
        Args:
            fused_qkv (`torch.tensor`, *required*): [batch_size, seq_length, num_heads * 3 * head_dim]
        Returns:
            query: [batch_size, seq_length, num_heads, head_dim] key: [batch_size, seq_length, num_heads, head_dim]
            value: [batch_size, seq_length, num_heads, head_dim]
        """
        if self.new_decoder_architecture:
            batch, seq_len, _ = fused_qkv.shape
            qkv = fused_qkv.view(batch, seq_len, -1, self.num_heads // self.num_kv_heads + 2, self.head_dim)
            query = qkv[:, :, :, :-2]
            key = qkv[:, :, :, [-2]]
            value = qkv[:, :, :, [-1]]
            key = torch.broadcast_to(key, query.shape)
            value = torch.broadcast_to(value, query.shape)

            query, key, value = [x.flatten(2, 3) for x in (query, key, value)]
            return query, key, value
        elif not self.multi_query:
            batch_size, seq_length, three_times_hidden_size = fused_qkv.shape
            fused_qkv = fused_qkv.view(batch_size, seq_length, self.num_heads, 3, self.head_dim)
            return fused_qkv[..., 0, :], fused_qkv[..., 1, :], fused_qkv[..., 2, :]
        else:
            batch_size, seq_length, three_times_hidden_size = fused_qkv.shape
            fused_qkv = fused_qkv.view(batch_size, seq_length, self.num_heads + 2, self.head_dim)
            return fused_qkv[..., :-2, :], fused_qkv[..., [-2], :], fused_qkv[..., [-1], :]

    # Copied from transformers.models.bloom.modeling_bloom.BloomAttention._merge_heads
    def _merge_heads(self, x: torch.Tensor) -> torch.Tensor:
        """
        Merge heads together over the last dimenstion
        Args:
            x (`torch.tensor`, *required*): [batch_size * num_heads, seq_length, head_dim]
        Returns:
            torch.tensor: [batch_size, seq_length, num_heads * head_dim]
        """
        # What we want to achieve is:
        # batch_size * num_heads, seq_length, head_dim -> batch_size, seq_length, num_heads * head_dim
        batch_size_and_num_heads, seq_length, _ = x.shape
        batch_size = batch_size_and_num_heads // self.num_heads

        # First view to decompose the batch size
        # batch_size * num_heads, seq_length, head_dim -> batch_size, num_heads, seq_length, head_dim
        x = x.view(batch_size, self.num_heads, seq_length, self.head_dim)

        # batch_size, num_heads, seq_length, head_dim -> batch_size, seq_length, num_heads, head_dim
        x = x.permute(0, 2, 1, 3)

        # batch_size, seq_length, num_heads, head_dim -> batch_size, seq_length, num_heads * head_dim
        return x.reshape(batch_size, seq_length, self.num_heads * self.head_dim)

    def forward(
        self,
        hidden_states: torch.Tensor,
        alibi: Optional[torch.Tensor],
        attention_mask: torch.Tensor,
        layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
        head_mask: Optional[torch.Tensor] = None,
        use_cache: bool = False,
        output_attentions: bool = False,
    ):
        fused_qkv = self.query_key_value(hidden_states)  # [batch_size, seq_length, 3 x hidden_size]
        num_kv_heads = self.num_heads if self.new_decoder_architecture else self.num_kv_heads
        # 3 x [batch_size, seq_length, num_heads, head_dim]
        (query_layer, key_layer, value_layer) = self._split_heads(fused_qkv)

        batch_size, query_length, _, _ = query_layer.shape

        query_layer = query_layer.transpose(1, 2).reshape(batch_size * self.num_heads, query_length, self.head_dim)
        key_layer = key_layer.transpose(1, 2).reshape(
            batch_size * num_kv_heads,
            query_length,
            self.head_dim,
        )
        value_layer = value_layer.transpose(1, 2).reshape(batch_size * num_kv_heads, query_length, self.head_dim)

        past_kv_length = 0 if layer_past is None else layer_past[0].shape[1]
        query_layer, key_layer = self.maybe_rotary(query_layer, key_layer, past_kv_length)

        if layer_past is not None:
            past_key, past_value = layer_past
            # concatenate along seq_length dimension:
            #  - key: [batch_size * self.num_heads, kv_length, head_dim]
            #  - value: [batch_size * self.num_heads, kv_length, head_dim]
            key_layer = torch.cat((past_key, key_layer), dim=1)
            value_layer = torch.cat((past_value, value_layer), dim=1)

        _, kv_length, _ = key_layer.shape
        if use_cache:
            present = (key_layer, value_layer)
        else:
            present = None

        attention_mask_float = (attention_mask * 1.0).masked_fill(attention_mask, float("-1e9")).to(query_layer.dtype)

        query_layer_ = query_layer.reshape(batch_size, self.num_heads, -1, self.head_dim)
        key_layer_ = key_layer.reshape(batch_size, num_kv_heads, -1, self.head_dim)
        value_layer_ = value_layer.reshape(batch_size, num_kv_heads, -1, self.head_dim)

        if alibi is None:
            if output_attentions:
                # F.scaled_dot_product_attention doesn't return the attention weights, so we have
                # to do it by hand if we want them
                attention_scores = query_layer_ @ key_layer_.transpose(-1, -2)
                attention_scores /= math.sqrt(self.head_dim)

                attention_scores = F.softmax(
                    attention_scores + attention_mask_float, dim=-1, dtype=hidden_states.dtype
                )
                attn_output = attention_scores @ value_layer_
            else:
                attn_output = F.scaled_dot_product_attention(
                    query_layer_, key_layer_, value_layer_, attention_mask_float, 0.0, is_causal=False
                )
                attention_scores = None

            attn_output = attn_output.view(batch_size, self.num_heads, query_length, self.head_dim)
            attn_output = attn_output.permute(0, 2, 1, 3)
            attn_output = attn_output.reshape(batch_size, query_length, self.num_heads * self.head_dim)

            output_tensor = self.dense(attn_output)

            if output_attentions:
                return output_tensor, present, attention_scores
            else:
                return output_tensor, present

        else:
            matmul_result = query_layer_ @ key_layer_.transpose(-1, -2)

            # change view to [batch_size, num_heads, q_length, kv_length]
            attention_scores = matmul_result.view(batch_size, self.num_heads, query_length, kv_length)

            # cast attention scores to fp32, compute scaled softmax and cast back to initial dtype - [batch_size, num_heads, q_length, kv_length]
            input_dtype = attention_scores.dtype
            # `float16` has a minimum value of -65504.0, whereas `bfloat16` and `float32` have a minimum value of `-3.4e+38`
            if input_dtype == torch.float16 or input_dtype == torch.bfloat16:
                attention_scores = attention_scores.to(torch.float32)
            # Matt (HF) note: We could possibly use F.scaled_dot_product_attention here too, by
            # adding (alibi * self.inv_norm_factor) to attention_mask_float. I think this would be mathematically
            # equivalent and more performant, but there might be a numerical difference. If you're reading this
            # and you'd like to experiment and maybe file a PR, feel free!
            attention_logits = attention_scores + alibi.view(batch_size, self.num_heads, 1, -1)
            attention_logits *= self.inv_norm_factor
            attention_probs = F.softmax(attention_logits + attention_mask_float, dim=-1, dtype=hidden_states.dtype)
            # [batch_size, num_heads, q_length, kv_length]
            attention_probs = self.attention_dropout(attention_probs)

            if head_mask is not None:
                attention_probs = attention_probs * head_mask

            # change view [batch_size, num_heads, q_length, kv_length]
            attention_probs_reshaped = attention_probs.view(batch_size, self.num_heads, query_length, kv_length)

            # matmul: [batch_size * num_heads, q_length, head_dim]
            context_layer = (attention_probs_reshaped @ value_layer_).flatten(0, 1)

            # change view [batch_size, num_heads, q_length, head_dim]
            context_layer = self._merge_heads(context_layer)

            output_tensor = self.dense(context_layer)

            if output_attentions:
                return output_tensor, present, attention_probs
            else:
                return output_tensor, present


class FalconMLP(nn.Module):
    def __init__(self, config: FalconConfig):
        super().__init__()
        hidden_size = config.hidden_size

        self.dense_h_to_4h = FalconLinear(hidden_size, 4 * hidden_size, bias=config.bias)
        self.act = nn.GELU()
        self.dense_4h_to_h = FalconLinear(4 * hidden_size, hidden_size, bias=config.bias)
        self.hidden_dropout = config.hidden_dropout

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = self.act(self.dense_h_to_4h(x))
        x = self.dense_4h_to_h(x)
        return x


class FalconDecoderLayer(nn.Module):
    def __init__(self, config: FalconConfig):
        super().__init__()
        hidden_size = config.hidden_size
        self.num_heads = config.num_attention_heads
        self.self_attention = FalconAttention(config)
        self.mlp = FalconMLP(config)
        self.hidden_dropout = config.hidden_dropout
        self.config = config

        if config.new_decoder_architecture:
            # The layer norm before self-attention
            self.ln_attn = LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
            # The layer norm before the MLP
            self.ln_mlp = LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
        else:
            self.input_layernorm = LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
            if not config.parallel_attn:
                self.post_attention_layernorm = LayerNorm(hidden_size, eps=config.layer_norm_epsilon)

    def forward(
        self,
        hidden_states: torch.Tensor,
        alibi: Optional[torch.Tensor],
        attention_mask: torch.Tensor,
        layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
        head_mask: Optional[torch.Tensor] = None,
        use_cache: bool = False,
        output_attentions: bool = False,
    ):
        residual = hidden_states

        if self.config.new_decoder_architecture:
            attention_layernorm_out = self.ln_attn(hidden_states)
            mlp_layernorm_out = self.ln_mlp(hidden_states)
        else:
            attention_layernorm_out = self.input_layernorm(hidden_states)

        # Self attention.
        attn_outputs = self.self_attention(
            attention_layernorm_out,
            layer_past=layer_past,
            attention_mask=attention_mask,
            alibi=alibi,
            head_mask=head_mask,
            use_cache=use_cache,
            output_attentions=output_attentions,
        )

        attention_output = attn_outputs[0]

        if not self.config.new_decoder_architecture:
            if self.config.parallel_attn:
                mlp_layernorm_out = attention_layernorm_out
            else:
                residual = dropout_add(
                    attention_output, residual, self.config.attention_dropout, training=self.training
                )
                mlp_layernorm_out = self.post_attention_layernorm(residual)

        outputs = attn_outputs[1:]

        # MLP.
        mlp_output = self.mlp(mlp_layernorm_out)

        if self.config.new_decoder_architecture or self.config.parallel_attn:
            mlp_output += attention_output

        output = dropout_add(mlp_output, residual, self.config.hidden_dropout, training=self.training)

        if use_cache:
            outputs = (output,) + outputs
        else:
            outputs = (output,) + outputs[1:]

        return outputs  # hidden_states, present, attentions


FALCON_START_DOCSTRING = r"""
    This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
    library implements for all its model (such as downloading or saving, resizing the input embeddings etc.)
    This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
    Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
    and behavior.
    Parameters:
        config ([`FalconConfig`]): Model configuration class with all the parameters of the model.
            Initializing with a config file does not load the weights associated with the model, only the
            configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""

FALCON_INPUTS_DOCSTRING = r"""
    Args:
        input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`):
            `input_ids_length` = `sequence_length` if `past_key_values` is `None` else `past_key_values[0][0].shape[2]`
            (`sequence_length` of input past key value states). Indices of input sequence tokens in the vocabulary.
            If `past_key_values` is used, only `input_ids` that do not have their past calculated should be passed as
            `input_ids`.
            Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
            [`PreTrainedTokenizer.__call__`] for details.
            [What are input IDs?](../glossary#input-ids)
        past_key_values (`Tuple[Tuple[torch.Tensor]]` of length `config.num_hidden_layers`):
            Contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see
            `past_key_values` output below). Can be used to speed up sequential decoding. The `input_ids` which have
            their past given to this model should not be passed as `input_ids` as they have already been computed.
            Each element of `past_key_values` is a tuple (past_key, past_value):
            - past_key: [batch_size * num_heads, head_dim, kv_length]
            - past_value: [batch_size * num_heads, kv_length, head_dim]
        attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.
            [What are attention masks?](../glossary#attention-mask)
        head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
            Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
            - 1 indicates the head is **not masked**,
            - 0 indicates the head is **masked**.
        inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
            Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
            is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
            model's internal embedding lookup matrix.
            If `past_key_values` is used, optionally only the last `inputs_embeds` have to be input (see
            `past_key_values`).
        use_cache (`bool`, *optional*):
            If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
            `past_key_values`).
        output_attentions (`bool`, *optional*):
            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
            tensors for more detail.
        output_hidden_states (`bool`, *optional*):
            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
            more detail.
        return_dict (`bool`, *optional*):
            Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
"""


class FalconPreTrainedModel(PreTrainedModel):
    """
    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
    models.
    """

    config_class = FalconConfig
    base_model_prefix = "transformer"
    supports_gradient_checkpointing = True
    _no_split_modules = ["FalconDecoderLayer"]

    def __init__(self, *inputs, **kwargs):
        super().__init__(*inputs, **kwargs)

    def _init_weights(self, module: nn.Module):
        """Initialize the weights."""
        if isinstance(module, nn.Linear) or isinstance(module, FalconLinear):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()
        elif isinstance(module, LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)

    # Copied from transformers.models.bloom.modeling_bloom.BloomPreTrainedModel._set_gradient_checkpointing with BloomModel->FalconModel
    def _set_gradient_checkpointing(self, module: nn.Module, value: bool = False):
        if isinstance(module, FalconModel):
            module.gradient_checkpointing = value

    @staticmethod
    def _convert_cache_to_standard_format(
        past_key_value: Tuple[Tuple[torch.Tensor, torch.Tensor]], batch_size: int
    ) -> Tuple[Tuple[torch.Tensor, torch.Tensor]]:
        """
        Standardizes the format of the cache so as to match most implementations, i.e. to tuple(tuple([batch_size,
        num_heads, ...]))
        """
        batch_size_times_num_heads, kv_length, head_dim = past_key_value[0][0].shape
        # [batch_size * self.num_heads, kv_length, head_dim] -> [batch_size, num_heads, kv_length, head_dim]
        # Note that don't want to use self.num_attention_heads because the number of heads may vary depending
        # on whether we use multi_query attention.
        num_heads = batch_size_times_num_heads // batch_size
        return tuple(
            (
                layer_past[0].view(batch_size, num_heads, kv_length, head_dim),
                layer_past[1].view(batch_size, num_heads, kv_length, head_dim),
            )
            for layer_past in past_key_value
        )

    @staticmethod
    def _convert_to_rw_cache(
        past_key_value: Tuple[Tuple[torch.Tensor, torch.Tensor]]
    ) -> Tuple[Tuple[torch.Tensor, torch.Tensor]]:
        batch_size, num_heads, kv_length, head_dim = past_key_value[0][0].shape
        batch_size_times_num_heads = batch_size * num_heads
        # [batch_size, num_heads, kv_length, head_dim] -> [batch_size * num_heads, kv_length, head_dim]
        return tuple(
            (
                layer_past[0].view(batch_size_times_num_heads, kv_length, head_dim),
                layer_past[1].view(batch_size_times_num_heads, kv_length, head_dim),
            )
            for layer_past in past_key_value
        )


@add_start_docstrings(
    "The bare Falcon Model transformer outputting raw hidden-states without any specific head on top.",
    FALCON_START_DOCSTRING,
)
class FalconModel(FalconPreTrainedModel):
    def __init__(self, config: FalconConfig):
        super().__init__(config)