--- language: nl datasets: - common_voice tags: - audio - automatic-speech-recognition - phoneme-recognition model-index: - name: wav2vec2-base-960h-phoneme-reco-dutch results: - task: name: Automatic Phoneme Recognition type: automatic-phoneme-recognition dataset: name: CommonVoice (clean) type: librispeech_asr config: clean split: test args: language: nl metrics: - name: Test PER type: per value: 20.83 - name: Val PER type: per value: 16.18 --- The Wav2vec2 base model [facebook/wav2vec2-base-960h](https://huggingface.co/facebook/wav2vec2-base-960h) fine tuned on phoneme recognition task for the dutch language. # Usage To transcribe in phonemes audio files the model can be used as a standalone acoustic model as follows: ```python from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC from datasets import load_dataset import torch # load model and tokenizer processor = Wav2Vec2Processor.from_pretrained("Clementapa/wav2vec2-base-960h-phoneme-reco-dutch") model = Wav2Vec2ForCTC.from_pretrained("Clementapa/wav2vec2-base-960h-phoneme-reco-dutch") # load dummy dataset and read soundfiles ds = load_dataset("common_voice", "nl", split="validation") # tokenize input_values = processor(ds[0]["audio"]["array"], return_tensors="pt", padding="longest").input_values # Batch size 1 # retrieve logits logits = model(input_values).logits # take argmax and decode predicted_ids = torch.argmax(logits, dim=-1) transcription = processor.batch_decode(predicted_ids) ```