File size: 4,533 Bytes
d3a3e4e
 
 
 
 
a5f7800
d3a3e4e
a5f7800
d3a3e4e
e139910
d3a3e4e
 
a5f7800
d3a3e4e
a5f7800
d3a3e4e
a5f7800
 
 
 
d3a3e4e
 
a5f7800
d3a3e4e
a5f7800
 
 
 
 
 
 
 
 
 
d3a3e4e
 
a5f7800
d3a3e4e
a5f7800
d3a3e4e
a5f7800
 
 
d3a3e4e
a5f7800
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d3a3e4e
a5f7800
d3a3e4e
a5f7800
 
 
 
 
 
d3a3e4e
 
a5f7800
d3a3e4e
e139910
d3a3e4e
 
e139910
d3a3e4e
a5f7800
e139910
 
 
 
 
 
 
 
 
 
 
a5f7800
d3a3e4e
a5f7800
d3a3e4e
a5f7800
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
---
library_name: transformers
tags: []
---

# Model Card for LION-Gemma-2b-dpo-v1.0

The LION-series are trained using an **empirically optimized pipeline** that consists of three stages: SFT, DPO, and online preference learning (online DPO). We find simple techniques such as sequence packing, loss masking in SFT, increasing the preference dataset size in DPO, and online DPO training can significantly improve the performance of language models. Our best models (the LION-series) **exceed the performance of the official instruct models** tuned with closed-source data and algorithms.

For training datasets, code, and evaluation scripts, please refer to our [paper](https://arxiv.org/abs/2407.06542) and [codebase](https://github.com/Columbia-NLP-Lab/LionAlignment).


## Model description

This model is finetuned from [`Columbia-NLP/LION-Gemma-2b-sft-v1.0`](https://huggingface.co/Columbia-NLP/LION-Gemma-2b-sft-v1.0) using DPO from the LION pipeline.

- **Model type:** [`gemma-2b`](https://huggingface.co/google/gemma-2b)
- **Language(s) (NLP):** Primarily English
- **License:** Gemma Terms of Use
- **Finetuned from model:** [`Columbia-NLP/LION-Gemma-2b-sft-v1.0`](https://huggingface.co/Columbia-NLP/LION-Gemma-2b-sft-v1.0)


## Performance

| Model | Method | Size | Arena-Hard | AlpacaEval-2 | MT-Bench | OpenLLM |
|-------------|--------|------|------:|------:|---------:|-------:|
|[Gemma-2b](https://huggingface.co/google/gemma-2b) | - | 2B | - | - | - | 46.69 |
|[Gemma-2b-it](https://huggingface.co/google/gemma-2b-it) | SFT+RLHF | 2B | 3.4 | 5.44 | 5.63 | 42.75 |
|[Gemma-2b-zephyr](https://huggingface.co/wandb/gemma-2b-zephyr-dpo) | SFT+DPO | 2B | 0.9 | 2.65 | 4.13 | 46.92 |
|[LLaMA-2-7b-chat](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf) | SFT | 7B | 4.6 | 5.35 | 6.22 | 53.16 |
|[Vicuna-7b-v1.5](https://huggingface.co/lmsys/vicuna-7b-v1.5) | SFT | 7B | 2.5 | 7.62 | 6.57 | 52.06 |
|[LION-Gemma-2b-sft-v1.0 (ours)](https://huggingface.co/Columbia-NLP/LION-Gemma-2b-sft-v1.0) | SFT | 2B | 2.4 | 7.79 | 6.37 | 54.78 |
|⮕ [LION-Gemma-2b-dpo-v1.0 (ours)](https://huggingface.co/Columbia-NLP/LION-Gemma-2b-dpo-v1.0) | SFT+DPO | 2B | 4.6 | 8.75 | 6.58 | 55.35 |
|[LION-Gemma-2b-odpo-v1.0 (ours)](https://huggingface.co/Columbia-NLP/LION-Gemma-2b-odpo-v1.0) | SFT+DPO+ODPO | 2B | 5.0 | 9.57 | 6.75 | 55.98 |


## Intended uses

To ensure reproducibility, please use the following chat templates:

```python
import torch
from transformers import pipeline

pipe = pipeline(
    "text-generation",
    model="Columbia-NLP/LION-Gemma-2b-dpo-v1.0",
    device_map="auto",
    torch_dtype=torch.bfloat16,
)
messages = [
    {
        "role": "system",
        "content": "",
    },
    {
        "role": "user", 
        "content": "Write a short paragraph where every sentence start with the letter A."
    },
]
outputs = pipe(
    messages,
    max_new_tokens=128,
    do_sample=True,
    temperature=0.7,
    top_p=0.7,
    stop_sequence="<|im_end|>",
)
print(outputs[0]["generated_text"][-1]["content"])
# Alice always aspired to achieve academic excellence.
# After attending an esteemed academy, she acquired a plethora of knowledge and attended various extracurricular activities.
# Always eager to apply her newfound skills, Alice undertook ambitious projects and attended various workshops.
# As a result, Alice acquired a remarkable academic record and became an active member of her community.
```

to inspect the chat template/manually do generation:

```python
tokenizer = AutoTokenizer.from_pretrained("Columbia-NLP/LION-Gemma-2b-dpo-v1.0")
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
print(prompt)
# tokenize prompt and use model.generate
```


### Training details

Please refer to our [paper](https://arxiv.org/abs/2407.06542) and [codebase](https://github.com/Columbia-NLP-Lab/LionAlignment).


## Citation Information

If you find this model useful in your work, please consider citing our paper:

```
@misc{yu2024lionsempiricallyoptimizedapproach,
      title={LIONs: An Empirically Optimized Approach to Align Language Models}, 
      author={Xiao Yu and Qingyang Wu and Yu Li and Zhou Yu},
      year={2024},
      eprint={2407.06542},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2407.06542}, 
}
```

## Acknowledgements

We thank the Columbia-NLP group and [articulate.ai](https://www.articulateai.com/) for providing OpenAI API credits and computational resources to conduct our experiments.